Suricata User Guide
Release 7.0.0

OISF

Jul 18, 2023

CONTENTS

What is Suricata 1
1.1 About the Open Information Security Foundation 1
Quickstart guide 3
2.1 Installation L. L e e e e e 3
22 BasicSetup L e e e 3
2.3 0 Signatures L e e e e e e e e e e e e e e 4
24 Running Suricatao e e e e e e 4
2.5 ALRTting L e e e e e e e e e 5
2.6 EVEIJson e 5
Installation 7
3.1 SOUICE . v v v e e e e e e e e e e 7
3.2 Binary packages e e e e e e e e e e e e e e e 10
3.3 Advanced Installation L. e e e e e e e e 12
Upgrading 13
4.1 General inStruCtions it e e e e e e e e e e e e e e e e e e e 13
4.2 Upgrading 6.0t0 7.0 L e 13
43 Upgrading 5.0t0 6.0 e e 16
44 Upgrading4.1t05.0 o oL 16
Security Considerations 19
5.1 Running asaUser Other ThanRoot 19
52 ContainerS v vt e e e e e e e e e e e e 21
Support Status 23
6.1 Levelsof Support. o e e e 23
6.2 Distributions e e e 24
6.3 Architecture SUPPOTt L L e e e e e e e e e e e 25
Command Line Options 27
T UnitTests . . . oo v o e e e e e e e e e e e e e e e 31
Suricata Rules 33
8.1 RulesFormat e e e 33
82 MetaKeywords o e e e e e e e 39
83 IPKeywords e e e e e e 43
8.4 TCPkeywords e e 47
85 UDPkeywords e 50
8.6 ICMPkeywords e e 50

10

11

8.7

8.8

8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24
8.25
8.26
8.27
8.28
8.29
8.30
8.31
8.32
8.33
8.34
8.35
8.36
8.37
8.38
8.39
8.40
8.41
8.42
8.43
8.44

Payload Keywords o e e e e e e e e e e
Changes from PCREI toPCRE2 e e e
Transformations e e
Prefiltering Keywords e
Flow Keywords o L e e e e e
Bypass Keyword e e
HTTP Keywords o ot e
File Keywords e e e e e

SSL/TLS Keywords o o o e e e e e e e e e e e e e e
SSH Keywords e e e e e e
JABKeywords o o e e e e e e e e e e
Modbus Keyword L e e e e e e e e e
DCERPC Keywords o o e e e e e e e
DHCP keywords o o e e e e e e e e e
DNP3 Keywords o o e e e e e e
ENIP/CIP Keywords o o o e e e e e e e
FTP/FTP-DATA Keywords o v v o e
Kerberos Keywords o e
SMB Keywords e e
SNMP keywords o e e e e e e e e e e
Base6d keywords e e
SIPKeywords o o o e e e e e e e e e e e e e e e
RFB Keywords e e e e e e e
MQTT Keywords o o o e e e e e e e e e e e e e
IKE Keywords o e e e e e e
HTTP2 Keywords o o e e e e e e e
Quic Keywords e e e e e e e e
Generic App Layer Keywords 0 e e e e e
Xbits Keyword L e e e e
Thresholding Keywords o . e e
IP Reputation Keyword oL e
IP Addresses Match L
ConfigRules e e e e
Datasets e e
Lua Scripting for Detection e
Differences From Snort oL e
Multiple Buffer Matching e

Rule Management

9.1
9.2
9.3
9.4

Rule Management with Suricata-Update L
Adding Your Own Rules L
Rule Reloads e
Rules Profiling e e e e

Making sense out of Alerts

Performance

11.1
11.2
11.3
11.4
11.5
11.6

Runmodes
Packet Capture e e e e e e e e e e e
Tuning Considerations o 0 i e e e e e e e e e e e e e
Hyperscan e e e e e e e e
High Performance Configuration. e
Statistics o e e e e e e e e e e e e e e

129

140

159

181
181
183
184
185

187

12

13

14

15

16

17

18

19

20

21

11.7 TIgnoring Traffic o e e e e e e e e e e
11.8 Packet Profiling e e e e
11.9 Rule Profiling e e e e e
T1.10 Temalloc . . . o v o o e e e e e e e e e e e e e e e e

Configuration

12.1 Suricata.yaml L e e e e e e e e e e e
12.2 Global-Thresholds o e e e e e e
12.3 Exception Policies e e e e e e e e e
12.4 Snort.conf to Suricata.yaml e e e e
125 MultiTenanCy v o v e e e e e e e e e e e e e e e e e
12.6 Dropping Privileges After Startup L
12.7 Using Landlock LSM 0 L o e e
12.8 systemd notification L. Lo e e e e
129 Includes. L

Reputation
13.1 IPReputation 0 L e e e e e e e e e e e

Init Scripts

Setting up IPS/inline for Linux
15.1 Settingup IPS with Netfilter
15.2 SettingupIPSatLayer2 o e e e e

Setting up IPS/inline for Windows

Output

17.1 EVE . .
17.2 LuaOutput o oo e e e e e e e e e e e e e e e e e
17.3 Syslog Alerting Compatibility e e e e
17.4 Custom http logging o e e e e e e
17.5 Customtlslogging L e
17.6 LogRotation e e e e e e e e

Lua support
18.1 Luausagein Suricata. i vt i e e e e e e e e e e e e e
182 Luafunctions e e e e e

File Extraction

19.1 Architecture ot e e e e e e e e e e e e e
19.2 Settings o o v i e e e e e e e e e e
193 Output o e e e e e e e
19.4 Rules e e e e e e e e
19.5 MDS . o e
19.6 Updating Filestore Configuration i ittt e e e

Public Data Sets

Using Capture Hardware

21.1 Endace DAG e e e e
21.2 Napatech o e e e e
213 Myricomo e e e e e e e e e e e e
214 eBPFand XDP e e e
215 NEMAD . . . o o v o e e e e e e e e e e e e e e e e e e

217
217
272
275
278
283
286
287
288
289

291
291

295

297
297
301

307

309
309
373
374
376
377
378

379
379
379

399
399
399
400
401
401
404

407

409
409
410
419
420
431

21.6 AF_XDP
21.7 DPDK . .

22 Interacting via Unix Socket
22.1 Introduction e e e e
22.2 Commands in standard running modeo e e e e
223 Commandsonthecmdprompt. e
224 PCAPprocessing modeo e e e e e e e e e e
225 Buildyourownclient L

23 3rd Party Integration
23.1 Symantec SSL Visibility (BlueCoat) e

24 Man Pages
241 Suricata e e e e e e e e e e e e e e e e e
24.2 Suricata Socket Control e e e e e e e
24.3 Suricata Control L e e e
24.4 Suricata Control Filestore e e e

25 Acknowledgements

26 Licenses
26.1 GNU General Public License e e e
26.2 Creative Commons Attribution-NonCommercial 4.0 International Public License
26.3 Suricata Source Code e e
26.4 Suricata Documentation e e e e e e e e e e e

27 Suricata Developer Guide
27.1 Working with the Codebase e e e e e e
27.2 Suricatalnternals e e
27.3 Extending Suricata e e e

Bibliography

Index

443
443
444
445
445
447

449
449

451
451
457
459
460

463

465
465
469
473
473

475
475
504
505

525

527

CHAPTER
ONE

WHAT IS SURICATA

Suricata is a high performance Network IDS, IPS and Network Security Monitoring engine. It is open source and owned
by a community-run non-profit foundation, the Open Information Security Foundation (OISF). Suricata is developed
by the OISF.

1.1 About the Open Information Security Foundation

The Open Information Security Foundation is a non-profit foundation organized to build community and to support
open-source security technologies like Suricata, the world-class IDS/IPS engine.

1.1.1 License

The Suricata source code is licensed under version 2 of the GNU General Public License.

This documentation is licensed under the Creative Commons Attribution-NonCommercial 4.0 International Public
License.

https://oisf.net

Suricata User Guide, Release 7.0.0

2 Chapter 1. What is Suricata

CHAPTER
TWO

QUICKSTART GUIDE

This guide will give you a quick start to run Suricata and will focus only on the basics. For more details, read through
the more specific chapters.

2.1 Installation

It's assumed that you run a recent Ubuntu release as the official PPA can be used for the installation.

Installation steps:

sudo add-apt-repository ppa:oisf/suricata-stable
sudo apt update
sudo apt install suricata jq

The dedicated PPA repository is added, and after updating the index, Suricata can be installed. We recommend installing
the jq tool at this time as it will help with displaying information from Suricata's EVE JSON output (described later
in this guide).

For the installation on other systems or to use specific compile options see Installation.

After installing Suricata, you can check what version of Suricata you have running and with what options as well as
the service state:

sudo suricata --build-info
sudo systemctl status suricata

2.2 Basic setup

First, determine the interface(s) and IP address(es) on which Suricata should be inspecting network packets:

$ ip addr

2: enpls®: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc fq_codel state UP group..
—.default glen 1000

link/ether 00:11:22:33:44:55 brd ff:ff:ff:ff:ff:ff

inet 10.0.0.23/24 brd 10.23.0.255 scope global noprefixroute enpls®

Use that information to configure Suricata:

Suricata User Guide, Release 7.0.0

sudo vim /etc/suricata/suricata.yaml

There are many possible configuration options, we focus on the setup of the HOME_NET variable and the network inter-
face configuration. The HOME_NET variable should include, in most scenarios, the IP address of the monitored interface
and all the local networks in use. The default already includes the RFC 1918 networks. In this example 10.0.0.23 is
already included within 10.0.0.0/8. If no other networks are used the other predefined values can be removed.

In this example the interface name is enp1s® so the interface name in the af-packet section needs to match. An
example interface config might look like this:

Capture settings:

af-packet:

- interface: enpls®
cluster-id: 99
cluster-type: cluster_flow
defrag: yes
use-mmap: yes
tpacket-v3: yes

This configuration uses the most recent recommended settings for the IDS runmode for basic setups. There are many
of possible configuration options which are described in dedicated chapters and are especially relevant for high perfor-
mance setups.

2.3 Signatures

Suricata uses Signatures to trigger alerts so it's necessary to install those and keep them updated. Signatures are also
called rules, thus the name rule-files. With the tool suricata-update rules can be fetched, updated and managed to
be provided for Suricata.

In this guide we just run the default mode which fetches the ET Open ruleset:

sudo suricata-update

Afterwards the rules are installed at /var/lib/suricata/rules which is also the default at the config and uses the
sole suricata.rules file.

2.4 Running Suricata

With the rules installed, Suricata can run properly and thus we restart it:

sudo systemctl restart suricata

To make sure Suricata is running check the Suricata log:

sudo tail /var/log/suricata/suricata.log

The last line will be similar to this:

<Notice> - all 4 packet processing threads, 4 management threads initialized, engine.
< started.

4 Chapter 2. Quickstart guide

Suricata User Guide, Release 7.0.0

The actual thread count will depend on the system and the configuration.

To see statistics, check the stats.log file:

sudo tail -f /var/log/suricata/stats.log

By default, it is updated every 8 seconds to show updated values with the current state, like how many packets have
been processed and what type of traffic was decoded.

2.5 Alerting

To test the IDS functionality of Suricata it's best to test with a signature. The signature with ID 2100498 from the ET
Open ruleset is written specific for such test cases.

2100498:

alert ip any any -> any any (msg:"GPL ATTACK_RESPONSE id check returned root"; content:
~"uid=0|28|root|29|"; classtype:bad-unknown; sid:2100498; rev:7; metadata:created_at.
—2010_09_23, updated_at 2010_09_23;)

The syntax and logic behind those signatures is covered in other chapters. This will alert on any IP traffic that has the
content within its payload. This rule can be triggered quite easy. Before we trigger it, start tail to see updates to
fast.log.

Rule trigger:

sudo tail -f /var/log/suricata/fast.log
curl http://testmynids.org/uid/index.html

The following output should now be seen in the log:

[1:2100498:7] GPL ATTACK_RESPONSE id check returned root [**] [Classification:..
—Potentially Bad Traffic] [Priority: 2] {TCP} 217.160.0.187:80 -> 10.0.0.23:41618

This should include the timestamp and the IP of your system.

2.6 EVE Json

The more advanced output is the EVE JSON output which is explained in detail in Eve JSON Output. To see what this
looks like it's recommended to use jq to parse the JSON output.

Alerts:

sudo tail -f /var/log/suricata/eve.json | jq 'select(.event_type=="alert")'

This will display more detail about each alert, including meta-data.

Stats:

sudo tail -f /var/log/suricata/eve.json | jq 'select(.event_type=="stats")|.stats.
—capture.kernel_packets'
sudo tail -f /var/log/suricata/eve.json | jq 'select(.event_type=="stats")'

The first example displays the number of packets captured by the kernel; the second examples shows all of the statistics.

2.5. Alerting 5

Suricata User Guide, Release 7.0.0

6 Chapter 2. Quickstart guide

CHAPTER
THREE

INSTALLATION

Before Suricata can be used it has to be installed. Suricata can be installed on various distributions using binary
packages: Binary packages.

For people familiar with compiling their own software, the Source method is recommended.

Advanced users can check the advanced guides, see Arch Based.

3.1 Source

Installing from the source distribution files gives the most control over the Suricata installation.

Basic steps:

tar xzvf suricata-6.0.0.tar.gz
cd suricata-6.0.0

./configure

make

make install

This will install Suricata into /usr/local/bin/, use the default configuration in /usr/local/etc/suricata/ and
will output to /usr/local/var/log/suricata

3.1.1 Common configure options

--disable-gccmarch-native
Do not optimize the binary for the hardware it is built on. Add this flag if the binary is meant to be portable or
if Suricata is to be used in a VM.
--prefix=/usr/
Installs the Suricata binary into /usr/bin/. Default /usr/local/
--sysconfdir=/etc
Installs the Suricata configuration files into /etc/suricata/. Default /usr/local/etc/
--localstatedir=/var

Setups Suricata for logging into /var/log/suricata/. Default /usr/local/var/log/suricata

--enable-lua

Enables Lua support for detection and output.

Suricata User Guide, Release 7.0.0

--enable-geoip
Enables GeolP support for detection.

--enable-dpdk
Enables DPDK <https://www.dpdk.org/> packet capture method.

3.1.2 Dependencies

For Suricata's compilation you'll need the following libraries and their development headers installed:

libjansson, libpcap, libpcre2, libyaml, zlib

The following tools are required:

make gcc (or clang) pkg-config rustc cargo

Rust support:

rustc, cargo

Some distros don't provide or provide outdated Rust packages.
Rust can also be installed directly from the Rust project itself::

1) Install Rust https://www.rust-lang.org/en-US/install.html

2) Install cbindgen - if the cbindgen is not found in the repository
or the cbindgen version is lower than required, it can be
alternatively installed as: cargo install --force cbindgen

3) Make sure the cargo path is within your PATH environment

e.g. echo 'export PATH="$:~/.cargo/bin”"' >> ~/.bashrc
e.g. export PATH="$:/root/.cargo/bin"

Ubuntu/Debian

Minimal:

Installed Rust and cargo as indicated above

apt-get install build-essential git libjansson-dev libpcap-dev \
libpcre2-dev libtool libyaml-dev make pkg-config zliblg-dev

On most distros installing cbindgen with package manager should be enough

apt-get install cbindgen # alternative: cargo install --force chindgen

Recommended:

Installed Rust and cargo as indicated above

apt-get install autoconf automake build-essential ccache clang curl git \
gosu jq libbpf-dev libcap-ng® libcap-ng-dev libelf-dev \
libevent-dev libgeoip-dev libhiredis-dev libjansson-dev \
liblua5.1-dev libmagic-dev libnetl-dev libpcap-dev \
libpcre2-dev libtool libyaml-0-2 libyaml-dev m4 make \
pkg-config python3 python3-dev python3-yaml sudo zliblg \
zliblg-dev

cargo install --force cbindgen

8 Chapter 3.

Installation

Suricata User Guide, Release 7.0.0

Extra for iptables/nftables IPS integration:

apt-get install libnetfilter-queue-dev libnetfilter-queuel \
libnetfilter-log-dev libnetfilter-logl \
libnfnetlink-dev libnfnetlink®

CentOS, AlmaLinux, RockyLinux, Fedora, etc

To install all minimal dependencies, it is required to enable extra package repository in most distros. You can enable it
possibly by one of the following ways:

dnf -y update

dnf -y install dnf-plugins-core

Almalinux 8

dnf config-manager --set-enabled powertools

Almalinux 9

dnf config-manager --set-enable crb

Oracle Linux 8

dnf config-manager --set-enable 0l18_codeready_builder
Oracle Linux 9

dnf config-manager --set-enable 0l19_codeready_builder

Minimal:

Installed Rust and cargo as indicated above

dnf install -y gcc gcc-c++ git jansson-devel libpcap-devel libtool \
libyaml-devel make pcre2-devel which zlib-devel

cargo install --force chbindgen

Recommended:

Installed Rust and cargo as indicated above

dnf install -y autoconf automake diffutils file-devel gcc gcc-c++ git \
jansson-devel jq libcap-ng-devel libevent-devel \
libmaxminddb-devel libnet-devel libnetfilter_queue-devel \
libnfnetlink-devel libpcap-devel libtool libyaml-devel \
lua-devel 1z4-devel make nss-devel pcre2-devel pkgconfig \
python3-devel python3-sphinx python3-yaml sudo which \
zlib-devel

cargo install --force cbindgen

Compilation

Follow these steps from your Suricata directory:

./scripts/bundle.sh

./autogen. sh

./configure # you may want to add additional parameters here

./configure --help to get all available parameters

make -j8 # j is for paralleling, you may de/increase depending on your CPU
make install # to install your Suricata compiled binary

3.1. Source 9

Suricata User Guide, Release 7.0.0

3.2 Binary packages

3.2.1 Ubuntu

For Ubuntu, the OISF maintains a PPA suricata-stable that always contains the latest stable release.

To use it:

sudo apt-get install software-properties-common
sudo add-apt-repository ppa:oisf/suricata-stable
sudo apt-get update

sudo apt-get install suricata

3.2.2 Debian

In Debian 9 (stretch) and later do:

sudo apt-get install suricata

In the "stable" version of Debian, Suricata is usually not available in the latest version. A more recent version is often
available from Debian backports, if it can be built there.

To use backports, the backports repository for the current stable distribution needs to be added to the system-wide
sources list. For Debian 10 (buster), for instance, run the following as root:

echo "deb http://http.debian.net/debian buster-backports main" > \
/etc/apt/sources.list.d/backports.list

apt-get update

apt-get install suricata -t buster-backports

3.2.3 CentOS, AlmaLinux, RockyLinux, Fedora, etc

RPMs are provided for the latest release of Enterprise Linux. This includes CentOS Linux and rebuilds such as Alma-
Linux and RockyLinux. Additionally, RPMs are provided for the latest supported versions of Fedora.

RPMs specifically for CentOS Stream are not provided, however the RPMs for their related version may work fine.

Installing From Package Repositories

CentOS, RHEL, AlmaLinux, RockyLinux, etc Version 8+

dnf install epel-release dnf-plugins-core
dnf copr enable @oisf/suricata-7.0
dnf install suricata

10 Chapter 3. Installation

Suricata User Guide, Release 7.0.0

CentOS 7

yum install epel-release yum-plugin-copr
yum copr enable @oisf/suricata-7.0
yum install suricata

Fedora

dnf install dnf-plugins-core
dnf copr enable @oisf/suricata-7.0
dnf install suricata

Additional Notes for RPM Installations

e Suricata is pre-configured to run as the suricata user.

e Command line parameters such as providing the interface names can be configured in /etc/sysconfig/
suricata.

» Users can run suricata-update without being root provided they are added to the suricata group.
* Directories:

— /etc/suricata: Configuration directory

— /var/log/suricata: Log directory

— /var/lib/suricata: State directory rules, datasets.

Starting Suricata On-Boot

The Suricata RPMs are configured to run from Systemd.

To start Suricata:

systemctl start suricata

To stop Suricata:

systemctl stop suricata

To have Suricata start on-boot:

systemctl enable suricata

To reload rules:

systemctl reload suricata

3.2. Binary packages 11

Suricata User Guide, Release 7.0.0

3.2.4 Arch Based

The ArchLinux AUR contains Suricata and suricata-nfqueue packages, with commonly used configurations for compi-
lation (may also be edited to your liking). You may use makepkg, yay (sample below), or other AUR helpers to compile
and build Suricata packages.

yay -S suricata

3.3 Advanced Installation

Various installation guides for installing from GIT and for other operating systems are maintained at: https://redmine.
openinfosecfoundation.org/projects/suricata/wiki/Suricata_Installation

12 Chapter 3. Installation

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_Installation
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_Installation

CHAPTER
FOUR

UPGRADING

4.1 General instructions

Suricata can be upgraded by simply installing the new version to the same locations as the already installed ver-
sion. When installing from source, this means passing the same --prefix, --sysconfdir, --localstatedir and
--datadir options to configure.

$ suricata --build-info|grep -A 3 '\-\-prefix'

--prefix /usr
--sysconfdir /etc
--localstatedir /var
--datarootdir /usr/share

4.1.1 Configuration Updates

New versions of Suricata will occasionally include updated config files: classification.config and reference.
config. Since the Suricata installation will not overwrite these if they exist, they must be manually updated. If there
are no local modifications they can simply be overwritten by the ones Suricata supplies.

Major updates include new features, new default settings and often also remove features. This upgrade guide covers
the changes that might have an impact of migrating from an older version and keeping the config. We encourage you
to also check all the new features that have been added but are not covered by this guide. Those features are either not
enabled by default or require dedicated new configuration.

4.2 Upgrading 6.0 to 7.0

4.2.1 Major changes

» Upgrade of PCREI to PCRE2. See Changes from PCREI to PCRE? for more details.

* IPS users: by default various new "exception policies" are set to DROP traffic. Please see Exception Policies for
details on the settings and their scope.

* New protocols enabled by default: bittorrent-dht, quic, http2

* The telnet protocol is also enabled by default, but only for the app-layer.

13

Suricata User Guide, Release 7.0.0

4.2.2 Security changes

* suricata.yaml now prevents process creation by Suricata by default with security.limit-noproc. The suricata.yaml

configuration file needs to be updated to enable this feature. For more info, see Configuration hardening.

* Absolute filenames and filenames containing parent directory traversal are no longer allowed by default for

datasets when the filename is specified as part of a rule. See Datasets Security and Datasets File Locations
for more information.

* Lua rules are now disabled by default (change also introduced in 6.0.13), see Lua Scripting for Detection.

4.2.3 Removals

* The libprelude output plugin has been removed.

* EVE DNS vl logging support has been removed. If still using EVE DNS v1 logging, see the manual section on

DNS logging configuration for the current configuration options: DNS EVE Configuration

4.2.4 Logging changes

» IKEv2 Eve logging changed, the event_type has become ike which covers both protocol versions. The fields

errors and notify have moved to ike.ikev2.errors and ike.ikev2.notify.
FTP DATA metadata for alerts are now logged in ftp_data instead of root.
Alert x££ field is now logged as alert.xff for alerts instead of at the root.

Protocol values and their names are built into Suricata instead of using the system's /etc/protocols file. Some
names and casing may have changed in the values proto in eve. json log entries and other logs containing
protocol names and values. See https://redmine.openinfosecfoundation.org/issues/4267 for more information.

Logging of additional HTTP headers configured through the EVE http.custom option will now be logged in
the request_headers and/or response_headers respectively instead of merged into the existing http object.
In Suricata 6.0, a configuration like:

http:
custom: [Server]

would result in a log entry like:

"http": {
"hostname": "suricata.io",
"http_method": "GET",
"protocol™: "HTTP/1/1",
"server": "nginx",

}

This merging of custom headers in the http object could result in custom headers overwriting standard fields in
the http object, or a response header overwriting request header.

To prevent the possibility of fields being overwritten, all custom headers are now logged into the
request_headers and response_headers arrays to avoid any chance of collision. This also facilitates the
logging of headers that may appear multiple times, with each occurrence being logged in future releases (see
note below).

14

Chapter 4. Upgrading

https://redmine.openinfosecfoundation.org/issues/4267

Suricata User Guide, Release 7.0.0

While these arrays are not new in Suricata 7.0, they had previously been used exclusively for the
dump-all-headers option.

As of Suricata 7.0, the above configuration example will now be logged like:

"http": {
"hostname": "suricata.io",
"http_method": "GET",
"protocol": "HTTP/1/1",
"response_headers": [

{ "name": "Server", "value": "nginx" }

]

}

Effectively making the custom option a subset of the dump-all-headers option.

If you've been using the custom option, this may represent a breaking change. However, if you haven't used it,
there will be no change in the output.

Note: Currently, if the same HTTP header is seen multiple times, the values are concatenated into a comma-
separated value.

For more information, refer to: https://redmine.openinfosecfoundation.org/issues/1275.

4.2.5 Deprecations

e Multiple "include" fields in the configuration file will now issue a warning and in Suricata 8.0 will not be sup-
ported. See Includes for documentation on including multiple files.

e For AF-Packet, the cluster_rollover setting is no longer supported. Configuration settings using
cluster_rollover will cause a warning message and act as though cluster_flow * was specified. Please update
your configuration settings.

4.2.6 Other changes

» Experimental keyword http2.header is removed. http.header, http.request_header, and http.response_header
are to be used.

* NSS is no longer required. File hashing and JA3 can now be used without the NSS compile time dependency.

« If installing Suricata without the bundled Suricata-Update, the default-rule-path has been changed from
/etc/suricata/rules to /var/lib/suricata/rules to be consistent with Suricata when installed with
Suricata-Update.

* FTP has been updated with a maximum command request and response line length of 4096 bytes. To change the
default see F'TP.

e SWF decompression in http has been disabled by default. To change the default see Configure HTTP (libhtp).
Users with configurations from previous releases may want to modify their config to match the new default. See
https://redmine.openinfosecfoundation.org/issues/5632 for more information.

» The new option livedev is enabled by default with use-for-tracking being set to true. This should be disabled if
multiple live devices are used to capture traffic from the same network.

4.2. Upgrading 6.0 to 7.0 15

https://redmine.openinfosecfoundation.org/issues/1275
https://redmine.openinfosecfoundation.org/issues/5632

Suricata User Guide, Release 7.0.0

4.3 Upgrading 5.0 to 6.0

» SIP now enabled by default
* RDP now enabled by default
* ERSPAN Type I enabled by default.

4.3.1 Major changes

* New protocols enabled by default: mqtt, rfb
* SSH Client fingerprinting for SSH clients

* Conditional logging

e Initial HTTP/2 support

DCERPC logging

* Improved EVE logging performance

4.3.2 Removals
* File-store v1 has been removed. If using file extraction, the file-store configuration will need to be updated to
version 2. See Update File-store vl Configuration to V2.

¢ Individual Eve (JSON) loggers have been removed. For example, stats-json, dns-json, etc. Use multiple
Eve logger instances if this behavior is still required. See Multiple Logger Instances.

¢ Unified2 has been removed. See unified2-removed.

4.4 Upgrading 4.1 t0 5.0

4.4.1 Major changes

* New protocols enabled by default: snmp (new config only)

» New protocols disabled by default: rdp, sip

* New defaults for protocols: nfs, smb, tftp, krb5 ntp are all enabled by default (new config only)
* VXLAN decoder enabled by default. To disable, set decoder.vxlan.enabled to false.

* HTTP LZMA support enabled by default. To disable, set 1zma-enabled to false in each of the 1libhtp
configurations in use.

* classification.config updated. ET 5.0 ruleset will use this.

* decoder event counters use 'decoder.event' as prefix now. This can be controlled using the stats.
decoder-events-prefix setting.

16 Chapter 4. Upgrading

Suricata User Guide, Release 7.0.0

4.4.2 Removals

* dns-log, the text dns log. Use EVE.dns instead.
e file-log, the non-EVE JSON file log. Use EVE files instead.
* drop-log, the non-EVE JSON drop log.

See https://suricata.io/about/deprecation-policy/

4.4. Upgrading 4.1 t0 5.0 17

https://suricata.io/about/deprecation-policy/

Suricata User Guide, Release 7.0.0

18 Chapter 4. Upgrading

CHAPTER
FIVE

SECURITY CONSIDERATIONS

Suricata is a security tool that processes untrusted network data, as well as requiring elevated system privileges to
acquire that data. This combination deserves extra security precautions that we discuss below.

Additionally, supply chain attacks, particularly around rule distribution, could potentially target Suricata installations.

5.1 Running as a User Other Than Root

Note: If using the Suricata RPMs, either from the OISF COPR repo, or the EPEL repo, the following is already
configured for you. The only thing you might want to do is add your management user to the suricata group.

Many Suricata examples and guides will show Suricata running as the root user, particularly when running on live
traffic. As Suricata generally needs low level read (and in IPS write) access to network traffic, it is required that
Suricata starts as root, however Suricata does have the ability to drop down to a non-root user after startup, which could
limit the impact of a security vulnerability in Suricata itself.

Note: Currently the ability to drop root privileges after startup is only available on Linux systems.

5.1.1 Create User

Before running as a non-root user, you need to choose and possibly create the user and group that will Suricata will run
as. Typically this user would be a sytem user with the name suricata. Such a user can be created with the following
command:

useradd --no-create-home --system --shell /sbin/nologin suricata

This will create a user and group with the name suricata.

19

Suricata User Guide, Release 7.0.0

5.1.2 File System Permissions

Before running Suricata as the user suricata, some directory permissions will need to be updated to allow the

suricata read and write access.

Assuming your Suricata was installed from source using the recommended configuration of:

./configure --prefix=/usr/ --sysconfdir=/etc/ --localstatedir=/var/

the following directories will need their permissions updated:

Directory Permissions

/etc/suricata Read

/var/log/suricata | Read, Write

/var/lib/suricata | Read, Write

/var/run/suricata | Read, Write

The following commands will setup the correct permissions:

e /etc/suricata:

chgrp -R suricata /etc/suricata
chmod -R g+r /etc/suricata

e /var/log/suricata:

chgrp -R suricata /var/log/suricata
chmod -R g+rw /var/log/suricata

e /var/lib/suricata:

chgrp -R suricata /var/lib/suricata
chmod -R g+srw /var/lib/suricata

e /var/lib/suricata:

chgrp -R suricata /var/run/suricata
chmod -R g+srw /var/run/suricata

5.1.3 Configure Suricata to Run as Suricata

Suricata can be configured to run as an alternate user by updating the configuration file or using command line argu-

ments.

» Using the configuration file, update the run-as section to look like:

run-as:
user: suricata
group: suricata

* Or if using command line arguments, add the following to your command:

--user suricata --group suricata

20

Chapter 5. Security Considerations

Suricata User Guide, Release 7.0.0

5.1.4 Starting Suricata

It is important to note that Suricata still needs to be started with root permissions in most cases. Starting as root allows
Suricata to get access to the network interfaces and set the capabilities required during runtime before it switches down
to the configured user.

5.1.5 Other Commands: Suricata-Update, SuricataSC

With the previous permissions setup, suricata-update and suricatasc can also be run without root or sudo. To
allow a user to access these commands, add them to the suricata group.

5.2 Containers

Containers such as Docker and Podman are other methods to provide isolation between Suricata and the host machine
running Suricata. However, we still recommend running as a non-root user, even in containers.

5.2.1 Capabilities

For both Docker and Podman the following capabilities should be provided to the container running Suricata for proper
operation:

--cap-add=net_admin --cap-add=net_raw --cap-add=sys_nice

5.2.2 Podman

Unfortunately Suricata will not work with rootless Podman, this is due to Suricata's requirement to start with root
privileges to gain access to the network interfaces. However, if started with the above capabilities, and configured to
run as a non-root user, it will drop root privileges before processing network data.

5.2. Containers 21

Suricata User Guide, Release 7.0.0

22 Chapter 5. Security Considerations

CHAPTER
SIX

SUPPORT STATUS

6.1 Levels of Support

The support tiers detailed below do not represent a binding commitment. Instead, they serve as a framework that the
OISF employs to prioritize features and functionality.

6.1.1 Tier 1

Tier 1 supported items are developed and supported by the Suricata team. These items receive full CI (continuous
integration) coverage, and functional failures block git merges and releases. Tier 1 features are enabled by default on
platforms that support the feature.

6.1.2 Tier 2

Tier 2 supported items are developed and supported by the Suricata team, sometimes with help from community mem-
bers. Major functional failures block git merges and releases, however less major issues may be documented as "known
issues" and may go into a release. Tier 2 features and functionality may be disabled by default.

6.1.3 Community
When a feature of Suricata is community supported, it means the OISF/Suricata development team won’t directly
support it. This is to avoid overloading the team.
When accepting a feature into the code base anyway, it will come with a number of limits and conditions:
* submitter must commit to maintaining it:
— make sure code compiles and correctly functions after Suricata and/or external (e.g. library) changes.
— support users when they encounter problems on forum and redmine tickets.

¢ the code will be disabled by default and will not become part of the QA setup. This means it will be enabled
only by an --enable configure flag.

¢ the code may not have CI coverage by the OISF infrastructure.

If the feature gets lots of traction, and/or if the team just considers it very useful, it may get ‘promoted’ to being officially
supported.

On the other hand, the feature will be removed if the submitter stops maintaining it and no-one steps up to take over.

23

Suricata User Guide, Release 7.0.0

6.1.4 Vendor

Vendor supported features are features specific to a certain vendor and usually require software and/or hardware from
that vendor. While these features may exist in the main Suricata code, they rely on support from the vendor to keep the
feature in a functional state.

Vendor supported functionality will generally not have CI or QA coverage by the OISF.

6.1.5 Unmaintained

When a feature is unmaintained it is very likely broken and may be (partially) removed during cleanups and code
refactoring. No end-user support is done by the core team. If someone wants to help maintain and support such a
feature, we recommend talking to the core team before spending a lot of time on it.

Please see Contributing to Suricata for more information if you wish to contribute.

6.2 Distributions

6.2.1 Tier 1

These tier 1 supported Linux distributions and operating systems receive full CI and QA, as well as documentation.

Distribution Version Support QA Notes

RHEL/CentOS 7 OISF

RHEL/Alma/Rocky | 8 OISF

RHEL/Alma/Rocky | 9 OISF

Ubuntu 20.04 OISF

Ubuntu 22.04 OISF

Debian 10 (Buster) OISF

Debian 11 (Bullseye) OISF Foundation of SELKS

Debian 12 (Book- | OISF

worm)

FreeBSD 12 OISF Foundation of OPNsense, pfSense

FreeBSD 13 OISF Foundation of OPNSense
6.2.2 Tier 2

These tier 2 supported Linux distributions and operating systems receive CI but not full QA (functional testing).

Distribution Version Support QA Notes
CentOS Stream OISF

Fedora Active OISF

OpenBSD 7.2 OISF

OpenBSD 7.1 OISF

0OSX/macOS 7? OISF

Win- OISF

dows/MinGW 64

24 Chapter 6. Support Status

Suricata User Guide, Release 7.0.0

6.3 Architecture Support

6.3.1 Tier 1
Architecture | Support QA Notes
x86_64 OISF
ARMS-64bit | OISF
6.3.2 Tier 2
Architecture | Support QA Notes
ARM7-32bit | OISF
i386 OISF
6.3.3 Community
Architecture | Support QA Notes
PPCo64el Part of Fedora automated QA Access can be arranged through IBM dev
cloud
PPC64 No access to working hardware
PPC32 No access to working hardware
RISC-V

6.3.4 High Level Features

Capture support

Tier 1

Tier 2

Capture Type Maintainer | QA | Notes
AF_PACKET OISF Used by Security Onion, SELKS
NETMAP (FreeBSD) | OISF Used by OPNsense, PFsense
NFQUEUE OISF
libpcap OISF
Capture Type Maintainer | QA | Notes
PF_RING OISF
NETMAP (Linux) OISF
DPDK OISF
AF_PACKET (eBPF/XDP) | OISF

6.3. Architecture Support

25

Suricata User Guide, Release 7.0.0

Community
Capture Type | Maintainer | QA | Notes
NFLOG Community
AF_XDP Community
Vendor
Capture Type | Maintainer QA | Notes
Napatech Napatech / Community
Unmaintained
Capture Type | Maintainer | QA | Notes
IPFW
Endace/DAG
Operation modes
Tier 1
Mode Maintainer QA Notes
IDS (passive) OISF
IPS (active) OISF
Offline pcap file OISF
Tier 2
Mode Maintainer QA Notes
Unix socket mode OISF
IDS (active) OISF Active responses, reject keyword

26

Chapter 6. Support Status

CHAPTER
SEVEN

COMMAND LINE OPTIONS

Suricata's command line options:

-h

Display a brief usage overview.
-V

Displays the version of Suricata.
-Cc <path>

Path to configuration file.

--include <path>

Additional configuration files to include. Multiple additional configuration files can be provided and will be
included in the order specified on the command line. These additional configuration files are loaded as if they
existed at the end of the main configuration file.

Example including one additional file:

--include /etc/suricata/other.yaml

Example including more than one additional file:

--include /etc/suricata/other.yaml --include /etc/suricata/extra.yaml

Test configuration.

Increase the verbosity of the Suricata application logging by increasing the log level from the default. This option
can be passed multiple times to further increase the verbosity.

e -v: INFO

e -vv: PERF

* -vvv: CONFIG
e -vvvv: DEBUG

This option will not decrease the log level set in the configuration file if it is already more verbose than the level
requested with this option.

-r <path>

Run in pcap offline mode (replay mode) reading files from pcap file. If <path> specifies a directory, all files in
that directory will be processed in order of modified time maintaining flow state between files.

27

Suricata User Guide, Release 7.0.0

--pcap-file-continuous
Used with the -r option to indicate that the mode should stay alive until interrupted. This is useful with directories
to add new files and not reset flow state between files.

--pcap-file-recursive
Used with the -r option when the path provided is a directory. This option enables recursive traversal into sub-
directories to a maximum depth of 255. This option cannot be combined with --pcap-file-continuous. Symlinks
are ignored.

--pcap-file-delete
Used with the -r option to indicate that the mode should delete pcap files after they have been processed. This is
useful with pcap-file-continuous to continuously feed files to a directory and have them cleaned up when done.
If this option is not set, pcap files will not be deleted after processing.

-i <interface>
After the -i option you can enter the interface card you would like to use to sniff packets from. This option will
try to use the best capture method available. Can be used several times to sniff packets from several interfaces.

--pcap[=<device>]
Run in PCAP mode. If no device is provided the interfaces provided in the pcap section of the configuration file
will be used.

--af-packet[=<device>]
Enable capture of packet using AF_PACKET on Linux. If no device is supplied, the list of devices from the
af-packet section in the yaml is used.

--af-xdp[=<device>]
Enable capture of packet using AF_XDP on Linux. If no device is supplied, the list of devices from the af-xdp
section in the yaml is used.

-q <queue id>
Run inline of the NFQUEUE queue ID provided. May be provided multiple times.

-s <filename.rules>

With the -s option you can set a file with signatures, which will be loaded together with the rules set in the yaml.
It is possible to use globbing when specifying rules files. For example, -s '/path/to/rules/*.rules’

-S <filename.rules>

With the -S option you can set a file with signatures, which will be loaded exclusively, regardless of the rules set
in the yaml.

It is possible to use globbing when specifying rules files. For example, -S '/path/to/rules/*.rules'

-1 <directory>

With the -1 option you can set the default log directory. If you already have the default-log-dir set in yaml, it will
not be used by Suricata if you use the -1 option. It will use the log dir that is set with the -1 option. If you do not
set a directory with the -1 option, Suricata will use the directory that is set in yaml.

Normally if you run Suricata on your console, it keeps your console occupied. You can not use it for other
purposes, and when you close the window, Suricata stops running. If you run Suricata as daemon (using the -D
option), it runs at the background and you will be able to use the console for other tasks without disturbing the
engine running.

28 Chapter 7. Command Line Options

Suricata User Guide, Release 7.0.0

--runmode <runmode>

With the --runmode option you can set the runmode that you would like to use. This command line option can
override the yaml runmode option.

Runmodes are: workers, autofp and single.

For more information about runmodes see Runmodes in the user guide.
-F <bpf filter file>

Use BPF filter from file.
-k [all|none]

Force (all) the checksum check or disable (none) all checksum checks.

--user=<user>

Set the process user after initialization. Overrides the user provided in the run-as section of the configuration
file.

--group=<group>
Set the process group to group after initialization. Overrides the group provided in the run-as section of the
configuration file.

--pidfile <file>

Write the process ID to file. Overrides the pid-file option in the configuration file and forces the file to be written
when not running as a daemon.

--init-errors-fatal
Exit with a failure when errors are encountered loading signatures.

--strict-rule-keywords[=all | <keyword> | <keywords(csv)]
Applies to: classtype, reference and app-layer-event.

By default missing reference or classtype values are warnings and not errors. Additionally, loading outdated
app-layer-event events are also not treated as errors, but as warnings instead.

If this option is enabled these warnings are considered errors.

If no value, or the value 'all', is specified, the option applies to all of the keywords above. Alternatively, a comma
separated list can be supplied with the keyword names it should apply to.

--disable-detection
Disable the detection engine.

--disable-hashing
Disable support for hash algorithms such as md5, shal and sha256.

By default hashing is enabled. Disabling hashing will also disable some Suricata features such as the filestore,
ja3, and rule keywords that use hash algorithms.

--dump-config
Dump the configuration loaded from the configuration file to the terminal and exit.

--dump-features

Dump the features provided by Suricata modules and exit. Features list (a subset of) the configuration values and
are intended to assist with comparing provided features with those required by one or more rules.

--build-info

Display the build information the Suricata was built with.

29

Suricata User Guide, Release 7.0.0

--list-app-layer-protos

List all supported application layer protocols.
--list-keywords=[all|csv|<kword>]

List all supported rule keywords.
--list-runmodes

List all supported run modes.

--set <key>=<value>

Set a configuration value. Useful for overriding basic configuration parameters. For example, to change the
default log directory:

--set default-log-dir=/var/tmp

This option cannot be used to add new entries to a list in the configuration file, such as a new output. It can only
be used to modify a value in a list that already exists.

For example, to disable the eve-1log in the default configuration file:

--set outputs.l.eve-log.enabled=no

Also note that the index values may change as the suricata.yaml is updated.
See the output of --dump-config for existing values that could be modified with their index.
--engine-analysis
Print reports on analysis of different sections in the engine and exit. Please have a look at the conf parameter
engine-analysis on what reports can be printed
--unix-socket=<file>
Use file as the Suricata unix control socket. Overrides the filename provided in the unix-command section of the
configuration file.
--reject-dev=<device>
Use device to send out RST / ICMP error packets with the reject keyword.
--pcap-buffer-size=<size>
Set the size of the PCAP buffer (0 - 2147483647).
--netmap[=<device>]
Enable capture of packet using NETMAP on FreeBSD or Linux. If no device is supplied, the list of devices from
the netmap section in the yaml is used.
--pfring[=<device>]
Enable PF_RING packet capture. If no device provided, the devices in the Suricata configuration will be used.
--pfring-cluster-id <id>
Set the PF_RING cluster ID.
--pfring-cluster-type <type>
Set the PF_RING cluster type (cluster_round_robin, cluster_flow).

-d <divert-port>
Run inline using IPFW divert mode.

30 Chapter 7. Command Line Options

Suricata User Guide, Release 7.0.0

--dag <device>

Enable packet capture off a DAG card. If capturing off a specific stream the stream can be select using a device
name like "dag0:4". This option may be provided multiple times read off multiple devices and/or streams.

--napatech
Enable packet capture using the Napatech Streams API.

--erf-in=<file>
Run in offline mode reading the specific ERF file (Endace extensible record format).
--simulate-ips

Simulate IPS mode when running in a non-IPS mode.

7.1 Unit Tests

The builtin unittests are only available when Suricata has been configured and built with --enable-unittests.

Running unittests does not require a configuration file. Use -1 to supply an output directory.:

sudo suricata -u

-u
Run the unit tests and exit. Requires that Suricata be configured with --enable-unittests.
-U, --unittest-filter=REGEX

With the -U option you can select which of the unit tests you want to run. This option uses REGEX. Example of
use: suricata -u -U http

--list-unittests
Lists available unit tests.
--fatal-unittests
Enables fatal failure on a unit test error. Suricata will exit instead of continuing more tests.

--unittests-coverage
Display unit test coverage report.

7.1. Unit Tests 31

Suricata User Guide, Release 7.0.0

32 Chapter 7. Command Line Options

CHAPTER
EIGHT

SURICATA RULES

8.1 Rules Format

Signatures play a very important role in Suricata. In most occasions people are using existing rulesets.
The official way to install rulesets is described in Rule Management with Suricata-Update.

There are a number of free rulesets that can be used via suricata-update. To aid in learning about writing rules, the
Emerging Threats Open ruleset is free and a good reference that has a wide range of signature examples.

This Suricata Rules document explains all about signatures; how to read, adjust and create them.
A rule/signature consists of the following:

¢ The action, determining what happens when the rule matches.

* The header, defining the protocol, IP addresses, ports and direction of the rule.

* The rule options, defining the specifics of the rule.
An example of a rule is as follows:

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

In this example, red is the action, green is the header and blue are the options.

We will be using the above signature as an example throughout this section, highlighting the different parts of the
signature.

8.1.1 Action

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

Valid actions are:
* alert - generate an alert.
* pass - stop further inspection of the packet.
e drop - drop packet and generate alert.
* reject - send RST/ICMP unreach error to the sender of the matching packet.

* rejectsrc - same as just reject.

33

Suricata User Guide, Release 7.0.0

* rejectdst - send RST/ICMP error packet to receiver of the matching packet.

* rejectboth - send RST/ICMP error packets to both sides of the conversation.

Note: In IPS mode, using any of the reject actions also enables drop.

For more information see Action-order.

8.1.2 Protocol

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

This keyword in a signature tells Suricata which protocol it concerns. You can choose between four basic protocols:
* tcp (for tep-traffic)
e udp
* icmp
* ip (ip stands for 'all' or 'any")
There are a couple of additional TCP related protocol options:
* tcp-pkt (for matching content in individual tcp packets)
* tcp-stream (for matching content only in a reassembled tcp stream)
There are also a few so-called application layer protocols, or layer 7 protocols you can pick from. These are:
* http (either HTTP1 or HTTP2)
* httpl
* http2
* ftp
e tls (this includes ssl)
* smb
* dns
* dcerpc
e dhep
* ssh
* smtp
* imap
* modbus (disabled by default)
* dnp3 (disabled by default)
* enip (disabled by default)
* nfs

o ike

34 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

e krb5
* bittorrent-dht
* ntp
e dhep
e rfb
* rdp
e snmp
e tftp
* sip
The availability of these protocols depends on whether the protocol is enabled in the configuration file, suricata.yaml.

If you have a signature with the protocol declared as 'http', Suricata makes sure the signature will only match if the TCP
stream contains http traffic.

8.1.3 Source and destination

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

The first emphasized part is the traffic source, the second is the traffic destination (note the direction of the directional
arrow).

With the source and destination, you specify the source of the traffic and the destination of the traffic, respectively. You
can assign IP addresses, (both IPv4 and IPv6 are supported) and IP ranges. These can be combined with operators:

Operator | Description

. IP ranges (CIDR notation)
! exception/negation

[..,..] grouping

Normally, you would also make use of variables, such as $HOME_NET and $EXTERNAL_NET. The suricata.yaml config-
uration file specifies the IP addresses these concern. The respective $HOME_NET and $EXTERNAL_NET settings will be
used in place of the variables in your rules.

See Rule-vars for more information.

Rule usage examples:

Example Meaning

11.1.1.1 Every IP address but 1.1.1.1

11.1.1.1, 1.1.1.2] Every IP address but 1.1.1.1 and 1.1.1.2
$HOME_NET Your setting of HOME_NET in yaml
[SEXTERNAL_NET, !$HOME_NET] | EXTERNAL_NET and not HOME_NET
[10.0.0.0/24, 110.0.0.5] 10.0.0.0/24 except for 10.0.0.5

[..., [....]]

[o |

8.1. Rules Format 35

Suricata User Guide, Release 7.0.0

Warning: If you set your configuration to something like this:

HOME_NET: any
EXTERNAL_NET: !$HOME_NET

You cannot write a signature using $SEXTERNAL_NET because it evaluates to 'not any', which is an invalid value.

Note: Please note that the source and destination address can also be matched via the ip.src and ip.dst keywords
(See IP Addresses Match). These keywords are mostly used in conjunction with the dataset feature (Datasets).

8.1.4 Ports (source and destination)

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;

sid:123; rev:1;)

The first emphasized part is the source port, the second is the destination port (note the direction of the directional

arrow).

Traffic comes in and goes out through ports. Different protocols have different port numbers. For example, the default
port for HTTP is 80 while 443 is typically the port for HTTPS. Note, however, that the port does not dictate which
protocol is used in the communication. Rather, it determines which application is receiving the data.

The ports mentioned above are typically the destination ports. Source ports, i.e. the application that sent the packet,
typically get assigned a random port by the operating system. When writing a rule for your own HTTP service, you
would typically write any -> 80, since that would mean any packet from any source port to your HTTP application

(running on port 80) is matched.

In setting ports you can make use of special operators as well. Operators such as:

Operator | Description

port ranges

!

exception/negation
[..,..] grouping
Rule usage examples:

Example Meaning
[80, 81, 82] | port 80, 81 and 82
[80: 82] Range from 80 till 82
[1024:] From 1024 till the highest port-number
180 Every port but 80
[80:100,!99] | Range from 80 till 100 but 99 excluded
[1:80,![2,4]] | Range from 1-80, except ports 2 and 4
[... [----1]

36

Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

8.1.5 Direction

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

The directional arrow indicates which way the signature will be evaluated. In most signatures an arrow to the right (->)
is used. This means that only packets with the same direction can match. However, it is also possible to have a rule
match both directions (<>):

source -> destination
source <> destination (both directions)

The following example illustrates direction. In this example there is a client with IP address 1.2.3.4 using port 1024.
A server with IP address 5.6.7.8, listening on port 80 (typically HTTP). The client sends a message to the server and
the server replies with its answer.

. —
client server
-
IP address: 1.2.3.4 IP address: 5.6.7.8
Port: 1024 Port: 80
—_— -

srclP 1234 src P 56,78

src port 1024 src port 80

dstIP 5678 dstIP 1234

dst port 80 dst port 1024

Now, let's say we have a rule with the following header:

alert tcp 1.2.3.4 1024 -> 5.6.7.8 80

Only the traffic from the client to the server will be matched by this rule, as the direction specifies that we do not want
to evaluate the response packet.

8.1. Rules Format 37

Suricata User Guide, Release 7.0.0

Warning: There is no 'reverse' style direction, i.e. there is no <-.

8.1.6 Rule options

The rest of the rule consists of options. These are enclosed by parenthesis and separated by semicolons. Some options
have settings (such as msg), which are specified by the keyword of the option, followed by a colon, followed by the
settings. Others have no settings; they are simply the keyword (such as nocase):

<keyword>: <settings>;
<keyword>;

Rule options have a specific ordering and changing their order would change the meaning of the rule.

Note: The characters ; and " have special meaning in the Suricata rule language and must be escaped when used in
a rule option value. For example:

msg: "Message with semicolon\;";

As a consequence, you must also escape the backslash, as it functions as an escape character.

The rest of this chapter in the documentation documents the use of the various keywords.
Some generic details about keywords follow.
Modifier Keywords

Some keywords function act as modifiers. There are two types of modifiers.

* The older style 'content modifiers' look back in the rule, e.g.:

alert http any any -> any any (content:"index.php"; http_uri; sid:1;)

In the above example the pattern 'index.php' is modified to inspect the HTTP uri buffer.

* The more recent type is called the 'sticky buffer'. It places the buffer name first and all keywords following it
apply to that buffer, for instance:

alert http any any -> any any (http_response_line; content:"403 Forbidden"; sid:1;)

In the above example the pattern '403 Forbidden' is inspected against the HTTP response line because it follows
the http_response_line keyword.

38 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

Normalized Buffers

A packet consists of raw data. HTTP and reassembly make a copy of those kinds of packets data. They erase anomalous
content, combine packets etcetera. What remains is a called the 'normalized buffer"

GET /somemap/f/fothermap/ HTTF/1.0

normalization

GET /somemap/othermap/ HTTP/.0

matching

content: “/somemap/othermap/";

Because the data is being normalized, it is not what it used to be; it is an interpretation. Normalized buffers are: all
HTTP-keywords, reassembled streams, TLS-, SSL-, SSH-, FTP- and dcerpc-buffers.

Note that there are some exceptions, e.g. the http_raw_uri keyword. See http.uri and http.uri.raw for more informa-
tion.

8.2 Meta Keywords

Meta keywords have no effect on Suricata's inspection of network traffic; they do have an effect on the way Suricata
reports events/alerts.

8.2.1 msg (message)

The keyword msg gives contextual information about the signature and the possible alert.

The format of msg is:

msg: "some description';

Examples:

msg:"ET MALWARE Win32/RecordBreaker CnC Checkin";
msg:"ET EXPLOIT SMB-DS DCERPC PnP bind attempt";

To continue the example from the previous chapter, the msg component of the signature is emphasized below:

8.2. Meta Keywords 39

Suricata User Guide, Release 7.0.0

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

Tip: It is a standard practice in rule writing to make the first part of the signature msg uppercase and to indicate the
class of the signature.

It is also standard practice that msg is the first keyword in the signature.

Note: The following characters must be escaped inside the msg: ; \ "

8.2.2 sid (signature ID)

The keyword sid gives every signature its own id. This id is stated with a number greater than zero. The format of sid
is:

sid:123;

Example of sid in a signature:

alert http $SHOME_NET any -> $SEXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

Tip: It is a standard practice in rule writing that the signature sid is provided as the last keyword (or second-to-last
if there is a rev) of the signature.

There are reserved ranges of sids, the reservations are recorded at https://sidallocation.org/ .

Note: This value must be unique for all rules within the same rule group (gid).

As Suricata-update currently considers the rule's sid only (cf. Bug#5447), it is advisable to opt for a completely unique
sid altogether.

8.2.3 rev (revision)

The sid keyword is commonly accompanied by the rev keyword. Rev represents the version of the signature. If a
signature is modified, the number of rev will be incremented by the signature writers. The format of rev is:

rev:123;

Example of rev in a signature:

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

40 Chapter 8. Suricata Rules

https://sidallocation.org/
https://redmine.openinfosecfoundation.org/issues/5447

Suricata User Guide, Release 7.0.0

Tip: Itis a standard practice in rule writing that the rev keyword is expressed after the sid keyword. The sid and rev
keywords are commonly put as the last two keywords in a signature.

8.2.4 gid (group ID)

The gid keyword can be used to give different groups of signatures another id value (like in sid). Suricata by default
uses gid 1. It is possible to modify the default value. In most cases, it will be unnecessary to change the default gid
value. Changing the gid value has no technical implications, the value is only noted in alert data.

Example of the gid value in an alert entry in the fast.log file. In the part [1:123], the first 1 is the gid (123 is the sid and
1 is the rev).

07/12/2022-21:59:26.713297 [**] [1:123:1] HTTP GET Request Containing Rule in URI [**] [Classification: Poten-
tially Bad Traffic] [Priority: 2] {TCP} 192.168.225.121:12407 -> 172.16.105.84:80

8.2.5 classtype

The classtype keyword gives information about the classification of rules and alerts. It consists of a short name, a long
name and a priority. It can tell for example whether a rule is just informational or is about a CVE. For each classtype,
the classification.config has a priority that will be used in the rule.

Example classtype definition:

config classification: web-application-attack,Web Application Attack,1
config classification: not-suspicious,Not Suspicious Traffic,3

Once we have defined the classification in the configuration file, we can use the classtypes in our rules. A rule with
classtype web-application-attack will be assigned a priority of 1 and the alert will contain "'Web Application Attack’ in
the Suricata logs:

classtype Alert Priority
web-application-attack | Web Application Attack | 1
not-suspicious Not Suspicious Traffic 3

Our continuing example also has a classtype: bad-unknown:

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

Tip: It is a standard practice in rule writing that the classtype keyword comes before the sid and rev keywords (as
shown in the example rule).

8.2. Meta Keywords 41

Suricata User Guide, Release 7.0.0

8.2.6 reference

The reference keyword is used to document where information about the signature and about the problem the signature
tries to address can be found. The reference keyword can appear multiple times in a signature. This keyword is meant
for signature-writers and analysts who investigate why a signature has matched. It has the following format:

reference:type,reference

A typical reference to www.info.com would be:

reference:url,www.info.com

There are several systems that can be used as a reference. A commonly known example is the CVE-database, which
assigns numbers to vulnerabilities, to prevent having to type the same URL over and over again. An example reference
of a CVE:

reference:cve,CVE-2014-1234

This would make a reference to http://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-2014-1234,

All the reference types are defined in the reference.config configuration file.

8.2.7 priority

The priority keyword comes with a mandatory numeric value which can range from 1 to 255. The values 1 through
4 are commonly used. The highest priority is 1. Signatures with a higher priority will be examined first. Normally
signatures have a priority determined through a classtype definition. The classtype definition can be overridden by
defining the priority keyword in the signature. The format of priority is:

priority:1;

8.2.8 metadata

The metadata keyword allows additional, non-functional, information to be added to the signature. While the format is
free-form, it is recommended to stick to [key, value] pairs as Suricata can include these in eve alerts. The format is:

metadata: key value;
metadata: key value, key value;

8.2.9 target

The target keyword allows the rules writer to specify which side of the alert is the target of the attack. If specified, the
alert event is enhanced to contain information about source and target.

The format is:

target: [src_ip|dest_ip]

If the value is src_ip then the source IP in the generated event (src_ip field in JSON) is the target of the attack. If target
is set to dest_ip then the target is the destination IP in the generated event.

42 Chapter 8. Suricata Rules

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1234

Suricata User Guide, Release 7.0.0

8.3 IP Keywords

8.3.1 til

The ttl keyword is used to check for a specific IP time-to-live value in the header of a packet. The format is:

ttl:<number>;

For example:

ttl:10;

At the end of the ttl keyword you can enter the value on which you want to match. The Time-to-live value determines
the maximal amount of time a packet can be in the Internet-system. If this field is set to 0, then the packet has to be
destroyed. The time-to-live is based on hop count. Each hop/router the packet passes subtracts one from the packet
TTL counter. The purpose of this mechanism is to limit the existence of packets so that packets can not end up in
infinite routing loops.

Example of the ttl keyword in a rule:

alert ip SEXTERNAL_NET any -> $SHOME_NET any (msg:"IP Packet With TTL 0"; ttl:0; classtype:misc-activity;
sid:1; rev:1;)

8.3.2 ipopts

With the ipopts keyword you can check if a specific IP option is set. Ipopts has to be used at the beginning of a rule.
You can only match on one option per rule. There are several options on which can be matched. These are:

IP Option | Description

T Record Route

eol End of List

nop No Op

ts Time Stamp

sec IP Security

esec IP Extended Security
Isrr Loose Source Routing
SSIT Strict Source Routing
satid Stream Identifier

any any IP options are set

Format of the ipopts keyword:

ipopts: <name>;

For example:

ipopts: ts;

Example of ipopts in a rule:

alert ip SEXTERNAL_NET any -> $HOME_NET any (msg:"IP Packet with timestamp option"; ipopts:ts;
classtype:misc-activity; sid:2; rev:1;)

8.3. IP Keywords 43

Suricata User Guide, Release 7.0.0

8.3.3 sameip

Every packet has a source IP-address and a destination IP-address. It can be that the source IP is the same as the
destination IP. With the sameip keyword you can check if the IP address of the source is the same as the IP address of
the destination. The format of the sameip keyword is:

sameip;

Example of sameip in a rule:

alert ip any any -> any any (msg:"IP Packet with the same source and destination IP"; sameip; classtype:bad-unknown;
sid:3; rev:1;)

8.3.4 ip_proto

With the ip_proto keyword you can match on the IP protocol in the packet-header. You can use the name or the number
of the protocol. You can match for example on the following protocols:

1 ICMP Internet Control Message

6 TCP Transmission Control Protocol
17 UDP User Datagram

47 GRE General Routing Encapsulation
50 ESP Encap Security Payload for IPv6
51 AH Authentication Header for Ipvé6
58 IPv6-ICMP ICMP for Ipv6

For the complete list of protocols and their numbers see http://en.wikipedia.org/wiki/List_of_IP_protocol_numbers
Example of ip_proto in a rule:
alert ip any any -> any any (msg:"IP Packet with protocol 1"; ip_proto:1; classtype:bad-unknown; sid:5; rev:1;)

The named variant of that example would be:

ip_proto:ICMP;

8.3.5 ipv4.hdr

Sticky buffer to match on content contained within an IPv4 header.
Example rule:

alert ip any any -> any any (msg:"IPv4 header keyword example"; ipv4.hdr; content:"|06]|"; offset:9; depth:1; sid:1;
rev:1;)

This example looks if byte 10 of IPv4 header has value 06, which indicates that the IPv4 protocol is TCP.

44 Chapter 8. Suricata Rules

http://en.wikipedia.org/wiki/List_of_IP_protocol_numbers

Suricata User Guide, Release 7.0.0

8.3.6 ipv6.hdr

Sticky buffer to match on content contained within an IPv6 header.
Example rule:

alert ip any any -> any any (msg:"IPv6 header keyword example"; ipv6.hdr; content:"|06|"; offset:6; depth:1; sid:1;
rev:1;)

This example looks if byte 7 of IP64 header has value 06, which indicates that the IPv6 protocol is TCP.

8.3.7 id

With the id keyword, you can match on a specific IP ID value. The ID identifies each packet sent by a host and
increments usually with one with each packet that is being send. The IP ID is used as a fragment identification number.
Each packet has an IP ID, and when the packet becomes fragmented, all fragments of this packet have the same ID. In
this way, the receiver of the packet knows which fragments belong to the same packet. (IP ID does not take care of the
order, in that case offset is used. It clarifies the order of the fragments.)

Format of id:

id:<number>;

Example of id in a rule:

alert tcp SEXTERNAL_NET any -> $SHOME_NET any (msg:"id keyword example"; id:1; content:"content|3a 20|";
fast_pattern; classtype:misc-activity; sid:12; rev:1;)

8.3.8 geoip

The geoip keyword enables matching on the source, destination or source and destination IPv4 addresses of network
traffic, and to see to which country it belongs. To be able to do this, Suricata uses the GeoIP2 API of MaxMind.

The syntax of geoip:

geoip: src,RU;

geoip: both,CN,RU;
geoip: dst,CN,RU,IR;
geoip: both,US,CA,UK;
geoip: any,CN,IR;

Option | Description

both Both source and destination have to match with the given geoip(s)

any Either the source or the destination has to match with the given geoip(s).
dest The destination matches with the given geoip.

src The source matches with the given geoip.

geoip currently only supports IPv4. As it uses the GeolP2 API of MaxMind, libmaxminddb must be compiled in.
You must download and install the GeolP2 or GeoLite2 database editions desired. Visit the MaxMind site at https:
//dev.maxmind.com/geoip/geolite2-free-geolocation-data for details.

You must also supply the location of the GeoIP2 or GeoLite2 database file on the local system in the YAML-file
configuration (for example):

8.3. IP Keywords 45

https://dev.maxmind.com/geoip/geolite2-free-geolocation-data
https://dev.maxmind.com/geoip/geolite2-free-geolocation-data

Suricata User Guide, Release 7.0.0

geoip-database: /usr/local/share/GeoIP/GeolLite2-Country.mmdb

8.3.9 fragbits (IP fragmentation)

With the fragbits keyword, you can check if the fragmentation and reserved bits are set in the IP header. The fragbits
keyword should be placed at the beginning of a rule. Fragbits is used to modify the fragmentation mechanism. During
routing of messages from one Internet module to the other, it can occur that a packet is bigger than the maximal packet
size a network can process. In that case, a packet can be send in fragments. This maximum of the packet size is called
Maximal Transmit Unit (MTU).

You can match on the following bits:

M - More Fragments
D - Do not Fragment
R - Reserved Bit

Matching on this bits can be more specified with the following modifiers:

+ match on the specified bits, plus any others
match if any of the specified bits are set
! match if the specified bits are not set

Format:

fragbits: [*+!]<[MDR]>;

Example of fragbits in a rule:

alert tcp SEXTERNAL_NET any -> $SHOME_NET any (msg:"fragbits keyword example non-fragmented packet with
fragment offset>0"; fragbits:M; fragoffset:>0; classtype:bad-unknown; sid:123; rev:1;)

8.3.10 fragoffset

With the fragoffset keyword you can match on specific decimal values of the IP fragment offset field. If you would
like to check the first fragments of a session, you have to combine fragoffset 0 with the More Fragment option. The
fragmentation offset field is convenient for reassembly. The id is used to determine which fragments belong to which
packet and the fragmentation offset field clarifies the order of the fragments.

You can use the following modifiers:

< match if the value is smaller than the specified value
> match if the value is greater than the specified value
! match if the specified value is not present

Format of fragoffset:

fragoffset:[!|<|>]<number>;

Example of fragoffset in a rule:

alert tcp SEXTERNAL_NET any -> $SHOME_NET any (msg:"fragoffset keyword example invalid non-fragmented
packet with fragment offset>0"; fragbits:M; fragoffset:>0; classtype:bad-unknown; sid:13; rev:1;)

46 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

8.3.11 tos

The tos keyword can match on specific decimal values of the IP header TOS field. The tos keyword can have a value
from 0 - 255. This field of the IP header has been updated by rfc2474 to include functionality for Differentiated services.
Note that the value of the field has been defined with the right-most 2 bits having the value 0. When specifying a value
for tos, ensure that the value follows this.

E.g, instead of specifying the decimal value 34 (hex 22), right shift twice and use decimal 136 (hex 88).
You can specify hexadecimal values with a leading x, e.g, x88.

Format of tos:

tos: [! J<number>;

Example of tos in a rule:

alert ip any any -> any any (msg:"tos keyword example tos value 8"; flow:established; tos:8; classtype:not-suspicious;
sid:123; rev:1;)

Example of tos with a negated value:

alert ip any any -> any any (msg:"tos keyword example with negated content"; flow:established,to_server; tos:!8;
classtype:bad-unknown; sid:14; rev:1;)

8.4 TCP keywords

8.4.1 seq

The seq keyword can be used in a signature to check for a specific TCP sequence number. A sequence number is
a number that is generated practically at random by both endpoints of a TCP-connection. The client and the server
both create a sequence number, which increases with one with every byte that they send. So this sequence number
is different for both sides. This sequence number has to be acknowledged by both sides of the connection. Through
sequence numbers, TCP handles acknowledgement, order and retransmission. Its number increases with every data-
byte the sender has send. The seq helps keeping track of to what place in a data-stream a byte belongs. If the SYN flag
is set at 1, than the sequence number of the first byte of the data is this number plus 1 (so, 2).

Example:

seq:0;

Example of seq in a signature:

alert tcp SEXTERNAL_NET any -> $SHOME_NET any (msg:"GPL SCAN NULL"; flow:stateless; ack:0; flags:0;
seq:0; reference:arachnids,4; classtype:attempted-recon; sid:2100623; rev:7;)

Example of seq in a packet (Wireshark):

8.4. TCP keywords 47

https://tools.ietf.org/html/rfc2474
https://en.wikipedia.org/wiki/Differentiated_services

Suricata User Guide, Release 7.0.0

= -l R T4 EE Qaa EZEX @
Filter: | = | Expression... | Clear | Apply|
M. - | Time SOurce Diestination Protocol | info
1 0. Daagan fedd: :230: 16ff: feaa:b 182::1:f83:d083 IMPwE Meighbor solicitatian
2 8.34T7e64 Fedig: - 230 18T7: Teaach T782::1 TIMPwE Rouler adverlisement
3 9.343192 2089.85.227.13 152.165.8.32 TLSv1 #application Data
192.168.8.32 209.085.227.19 53567 = https [ACK] 5eq=436627787 Ack=1282214B27 Win=1882 Len=8 TSW=3
5 13.287477 192.168.8,32 289.85.227 .18 TCP [Tor segment of 2 o gred o
6 13.287598 192.168.8.32 209.85.227.18 TLSv1 Application Data
713332348 209.85,227.18 152.168.8.32 TCP hitps = 54745 [ACK] Seq=2415329985 Ack=417R766438 Win=372 Len=8 Ti¥=1
B 13.447521 289.85.227.18 152.165.9.32 TLSw1l #pplication Data, Application Data
G 13.447555 192.168.58.32 259.085.227.18 TCR 54745 > https [ACK] Seq=41T4T7E6436 Ack=2415238283 Win=203 Len=8 TS¥=3

* Frame 4 |66 bytes on wire, 66 bytes ceptured)
k Ethernet II, Src: Intel 97:17:d6 (88:19:42:97:17:46), Dst: JetwayIn as:be:ab (80:30:18:a3:be:a6)
* Internet Protocol, Sre: 192.168.8.32 ([192.168.8.32), Dst: 289.85.227.19 (209.85.327.19)
T Transmission Cantrol Protocol, Sre Port: 53567 (53567), Dst Port: hitps (443), Seq: 43662TTET, Ack: 1282214827, Len: @
Source port: 53567 (53567
Destination port: hitps (443)
|Strean index: @
T T
AcCknaw Ledgenent numbe
Heater Length: 32 bytes
¥ Flags: @x1a {ACK)
Window size: 1882
v Checksum: @xdal? |validation dizabled]
v Dptions: |12 bytes)
» |SEQ/ACK analysis|

E6

1202214427

0AAE B0 30 18 a@ be ab 08 19 d2 97 1f o6 0B B0 45 8@
BA1E B@ 34 ab 15 40 96 48 06 25 7d @ a6 08 20 d1 55
8928 ©3 13 d1 3f 6L bt 47 af 57 ab g4 18
BH3E B3 o2 4a 17 99 B8 61 B1 @5 G2 9O 38 %b 71 6b o9
BadE bé hd

8.4.2 ack

The ack is the acknowledgement of the receipt of all previous (data)-bytes send by the other side of the TCP-connection.
In most occasions every packet of a TCP connection has an ACK flag after the first SYN and a ack-number which
increases with the receipt of every new data-byte. The ack keyword can be used in a signature to check for a specific
TCP acknowledgement number.

Format of ack:

ack:1;

Example of ack in a signature:

alert tcp SEXTERNAL_NET any -> $SHOME_NET any (msg:"GPL SCAN NULL"; flow:stateless; ack:0; flags:0;
seq:0; reference:arachnids,4; classtype:attempted-recon; sid:2100623; rev:7;)

Example of ack in a packet (Wireshark):

48 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

= wland- W

B W& C & T 4 EE aaqF WEEX @

Filter: | = | Expression... | Clear | Apply|

M. - Time Source Diastination Pratocol | Info
1 9.0a0pad fedd: :230: 16ff: feaa:h F182::1:FfB3:d083 I0MPwE Meighbor solicitation
¥ 8347864 Telif: - 238 18TT: fena:h T782::1 ItMPwE Router adverlisement
3 9.343792 289.85.227.19 152.168.98.32 TLSv1 #Application Data

192 160.8.37 2B9_05.227.18

5 13.287477 132.168.8.32 269.85.227.18 TCP [TOP segment of a reasscrbled PDU
6 13. 287598 192.16E.8.32 209_B5.227.18 TLSw1l Application Data
¥ 13,332348 209.85.227.18 152.168.8.32 TCP https = 54745 [ACK] Seq=22152299085 Ack=4170766438 Win=172 Len=8 TS¥=1
B 13.447521 289.85.227.18 152.165.9.32 TLSw1l #pplication Data, Application Data
G 13.447555 192.168.8.32 299.085.227.18 TCR 54745 > hitps [ACK] Seq=d1TaTE6436 Ack=2415238283 Win=203 Len=8 TS¥=3

F Frame 4 (66 Bytes on wire, 66 bytes captured)
F Ethernet IT, Src: Intel 97:11:d6 (88:19:42:97:17:d6), Dst: JetwayIn aa:be:af (80:38:18:a8:be:a6)
» Internet Protecol, Sre: 192.168.8.32 [192.168.8.32), Dst: 389.85.227.19 [209.35.327.19)
* Transmissien Control Protocol, Sre Port: 53567 (53567}, Dst Port: hitps (443), Seq: 436627787, Ack: 1282214827, Len: @
Source port: 53567 (535467
Bestination port: hitps (443)
|Strean index: @
Cequence nunber: AIEE277AT

Heater Length: 32 bytes
* Flags: @xla (ACK)
Window size: 18@Z2
* Checksum: @x4al2 [validation disabled]
» Dptions: {12 bytes)
F |SEQ/ACK analysis|

gAAE B0 30 18 a2 be a6 08 19 d2 97 1f 6 68 B 45 00
BALE BO 34 ab 15 40 08 48 B6 25 7d cB a6 08 20 d1 55
BO26 £3 13 d1 3f 6L bt 1a 66 o5 fb EIECHEREEL 80 19
BA36 B3 ca 4a 12 89 BE B1 B1 95 ©2 89 36 5b /1 ob o9
BAdE hé hd

=1

8.4.3 window

The window keyword is used to check for a specific TCP window size. The TCP window size is a mechanism that has
control of the data-flow. The window is set by the receiver (receiver advertised window size) and indicates the amount
of bytes that can be received. This amount of data has to be acknowledged by the receiver first, before the sender can
send the same amount of new data. This mechanism is used to prevent the receiver from being overflowed by data. The
value of the window size is limited and can be 2 to 65.535 bytes. To make more use of your bandwidth you can use a
bigger TCP-window.

The format of the window keyword:

window: [!]<number>;

Example of window in a rule:

alert tcp SEXTERNAL_NET any -> SHOME_NET any (msg:"GPL DELETED typot trojan traffic"; flow:stateless;
flags:S,12; window:55808; reference:mcafee,100406; classtype:trojan-activity; sid:2182; rev:8;)

8.4. TCP keywords 49

Suricata User Guide, Release 7.0.0

8.4.4 tcp.mss

Match on the TCP MSS option value. Will not match if the option is not present.

The format of the keyword:

tcp.mss:<min>-<max>;
tcp.mss: [<|>]<number>;
tcp.mss:<value>;

Example rule:

alert tcp SEXTERNAL_NET any -> $SHOME_NET any (flow:stateless; flags:S,12; tcp.mss:<536; sid:1234; rev:5;)

8.4.5 tcp.hdr

Sticky buffer to match on the whole TCP header.
Example rule:

alert tcp SEXTERNAL_NET any -> $HOME_NET any (flags:S,12; tcp.hdr; content:"[02 04]"; offset:20;
byte_test:2,<,536,0,big,relative; sid:1234; rev:5;)

This example starts looking after the fixed portion of the header, so into the variable sized options. There it will look
for the MSS option (type 2, option len 4) and using a byte_test determine if the value of the option is lower than 536.
The tcp.mss option will be more efficient, so this keyword is meant to be used in cases where no specific keyword is
available.

8.5 UDP keywords

8.5.1 udp.hdr

Sticky buffer to match on the whole UDP header.
Example rule:
alert udp any any -> any any (udp.hdr; content:"|00 08|"; offset:4; depth:2; sid:1234; rev:5;)

This example matches on the length field of the UDP header. In this case the length of 8 means that there is no payload.
This can also be matched using dsize:0;.

8.6 ICMP keywords

ICMP (Internet Control Message Protocol) is a part of IP. IP at itself is not reliable when it comes to delivering data
(datagram). ICMP gives feedback in case problems occur. It does not prevent problems from happening, but helps in
understanding what went wrong and where. If reliability is necessary, protocols that use IP have to take care of reliability
themselves. In different situations ICMP messages will be send. For instance when the destination is unreachable, if
there is not enough buffer-capacity to forward the data, or when a datagram is send fragmented when it should not be,
etcetera. More can be found in the list with message-types.

There are four important contents of a ICMP message on which can be matched with corresponding ICMP-keywords.
These are: the type, the code, the id and the sequence of a message.

50 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

8.6.1 itype

The itype keyword is for matching on a specific ICMP type (number). ICMP has several kinds of messages and uses
codes to clarify those messages. The different messages are distinct by different names, but more important by numeric
values. For more information see the table with message-types and codes.

The format of the itype keyword:

itype:min<>max;
itype: [<|>]<number>;

Example This example looks for an ICMP type greater than 10:

itype:>10;

Example of the itype keyword in a signature:

alert icmp $EXTERNAL_NET any -> $SHOME_NET any (msg:"GPL SCAN Broadscan Smurf Scanner"; dsize:4;
icmp_id:0; icmp_seq:0; itype:8; classtype:attempted-recon; sid:2100478; rev:4;)

The following lists all ICMP types known at the time of writing. A recent table can be found at the website of [ANA

ICMP Type | Name

0 Echo Reply

3 Destination Unreachable

4 Source Quench

5 Redirect

6 Alternate Host Address

8 Echo

9 Router Advertisement

10 Router Solicitation

11 Time Exceeded

12 Parameter Problem

13 Timestamp

14 Timestamp Reply

15 Information Request

16 Information Reply

17 Address Mask Request

18 Address Mask Reply

30 Traceroute

31 Datagram Conversion Error
32 Mobile Host Redirect

33 IPv6 Where-Are-You

34 IPv6 I-Am-Here

35 Mobile Registration Request
36 Mobile Registration Reply
37 Domain Name Request

38 Domain Name Reply

39 SKIP

40 Photuris

41 Experimental mobility protocols such as Seamoby

8.6. ICMP keywords 51

https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml

Suricata User Guide, Release 7.0.0

8.6.2 icode

With the icode keyword you can match on a specific ICMP code. The code of a ICMP message clarifies the message.
Together with the ICMP-type it indicates with what kind of problem you are dealing with. A code has a different
purpose with every ICMP-type.

The format of the icode keyword:

icode:min<>max;
icode: [<|>]<number>;

Example: This example looks for an ICMP code greater than 5:

icode:>5;

Example of the icode keyword in a rule:

alert icmp SHOME_NET any -> $SEXTERNAL_NET any (msg:"GPL MISC Time-To-Live Exceeded in Transit";
icode:0; itype:11; classtype:misc-activity; sid:2100449; rev:7;)

The following lists the meaning of all ICMP types. When a code is not listed, only type 0 is defined and has the meaning
of the ICMP code, in the table above. A recent table can be found at the website of IANA

ICMP Code | ICMP Type | Description

3 0 Net Unreachable

Host Unreachable

Protocol Unreachable

Port Unreachable

Fragmentation Needed and Don't Fragment was Set
Source Route Failed

Destination Network Unknown

Destination Host Unknown

Source Host Isolated

9 Communication with Destination Network is Administratively Prohibited
10 Communication with Destination Host is Administratively Prohibited
11 Destination Network Unreachable for Type of Service
12 Destination Host Unreachable for Type of Service

13 Communication Administratively Prohibited

14 Host Precedence Violation

5 Precedence cutoff in effect

Redirect Datagram for the Network (or subnet)
Redirect Datagram for the Host

Redirect Datagram for the Type of Service and Network
Redirect Datagram for the Type of Service and Host
Normal router advertisement

Doesn't route common traffic

Time to Live exceeded in Transit

Fragment Reassembly Time Exceeded

Pointer indicates the error

Missing a Required Option

Bad Length

Bad SPI

Authentication Failed

Decompression Failed

X0 AN N KW~

@)}

11

12

40

=[O = OO =R =IO —

continues on next page

52 Chapter 8. Suricata Rules

https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml

Suricata User Guide, Release 7.0.0

Table 1 - continued from previous page

ICMP Code | ICMP Type | Description
3 Decryption Failed
4 Need Authentication
5 Need Authorization

8.6.3 icmp_id

With the icmp_id keyword you can match on specific ICMP id-values. Every ICMP-packet gets an id when it is being
send. At the moment the receiver has received the packet, it will send a reply using the same id so the sender will
recognize it and connects it with the correct ICMP-request.

Format of the icmp_id keyword:

icmp_id:<number>;

Example: This example looks for an ICMP ID of 0:

icmp_id:0;

Example of the icmp_id keyword in a rule:

alert icmp $EXTERNAL_NET any -> $SHOME_NET any (msg:"GPL SCAN Broadscan Smurf Scanner"; dsize:4;
icmp_id:0; icmp_seq:0; itype:8; classtype:attempted-recon; sid:2100478; rev:4;)

8.6.4 icmp_seq

You can use the icmp_seq keyword to check for a ICMP sequence number. ICMP messages all have sequence numbers.
This can be useful (together with the id) for checking which reply message belongs to which request message.

Format of the icmp_seq keyword:

icmp_seq:<number>;

Example: This example looks for an ICMP Sequence of 0:

icmp_seq:0;

Example of icmp_seq in a rule:

alert icmp $EXTERNAL_NET any -> $SHOME_NET any (msg:"GPL SCAN Broadscan Smurf Scanner"; dsize:4;
icmp_id:0; icmp_seq:0; itype:8; classtype:attempted-recon; sid:2100478; rev:4;)

8.6.5 icmpv4.hdr

Sticky buffer to match on the whole ICMPv4 header.

8.6. ICMP keywords 53

Suricata User Guide, Release 7.0.0

8.6.6 icmpv6.hdr

Sticky buffer to match on the whole ICMPv6 header.

8.6.7 icmpv6.mtu

Match on the ICMPv6 MTU optional value. Will not match if the MTU is not present.
The format of the keyword:

icmpv6.mtu:<min>-<max>;
icmpv6.mtu: [<|>]<number>;
icmpv6.mtu:<value>;

Example rule:

alert ip SEXTERNAL_NET any -> $SHOME_NET any (icmpv6.mtu:<1280; sid:1234; rev:5;)

8.7 Payload Keywords

Payload keywords inspect the content of the payload of a packet or stream.

8.7.1 content

The content keyword is very important in signatures. Between the quotation marks you can write on what you would
like the signature to match. The most simple format of content is:

content: "............ ;

It is possible to use several contents in a signature.

Contents match on bytes. There are 256 different values of a byte (0-255). You can match on all characters; from a till
z, upper case and lower case and also on all special signs. But not all of the bytes are printable characters. For these
bytes heximal notations are used. Many programming languages use 0x00 as a notation, where 0x means it concerns
a binary value, however the rule language uses |00 | as a notation. This kind of notation can also be used for printable
characters.

Example:

|61] is a

|61 61| is aa

|41] is A

|21] is !

|OD| is carriage return
|®A] is line feed

There are characters you can not use in the content because they are already important in the signature. For matching
on these characters you should use the heximal notation. These are:

! |22]
; |3B]
|3A]
|7C]

54 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

It is a convention to write the heximal notation in upper case characters.

To write for instance http:// in the content of a signature, you should write it like this: content: "http|3Al//";
If you use a heximal notation in a signature, make sure you always place it between pipes. Otherwise the notation will
be taken literally as part of the content.

A few examples:

content:"a|0D|bc";
content:" |61 OD 62 63|";
content:"a|0D|b|63|";

It is possible to let a signature check the whole payload for a match with the content or to let it check specific parts of
the payload. We come to that later. If you add nothing special to the signature, it will try to find a match in all the bytes
of the payload.

drop tcp $SHOME_NET any -> $EXTERNAL_NET any (msg:"ET TROJAN Likely Bot Nick in IRC (USA +..)";
flow:established,to_server; flowbits:isset,is_proto_irc; content:"NICK "; pcre:"/NICK .*USA.*[0-9]{3,}/i"; refer-
ence:url,doc.emergingthreats.net/2008124; classtype:trojan-activity; sid:2008124; rev:2;)

By default the pattern-matching is case sensitive. The content has to be accurate, otherwise there will not be a match.

PAYLOAD

abCdefghlj

content:"abg"™:

-

content;"aBc¢": x

content:"abC";

Legend:

8.7. Payload Keywords 55

Suricata User Guide, Release 7.0.0

match

x no match

match in the payload

t no match in the payload

It is possible to use the ! for exceptions in contents as well.

For example:

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"Outdated Firefox on
Windows"; content:"User-Agent|3A| Mozilla/5.0 |[28|Windows|3B| ";
content:"Firefox/3."; distance:0; content:!"Firefox/3.6.13";
distance:-10; sid:9000000; rev:1;)

You see content: ! "Firefox/3.6.13";. This means an alert will be generated if the used version of Firefox is not
3.6.13.

Note: The following characters must be escaped inside the content: ; \ "

8.7.2 nocase

If you do not want to make a distinction between uppercase and lowercase characters, you can use nocase. The keyword
nocase is a content modifier.

The format of this keyword is:

nocase;

You have to place it after the content you want to modify, like:

content: "abc"; nocase;

Example nocase:

56 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

PAYLOAD

abCldefghlj

content:"abc”; nocase;
content:"aBc"; nocase;

content:"abC"; nocase;

It has no influence on other contents in the signature.

8.7.3 depth

The depth keyword is a absolute content modifier. It comes after the content. The depth content modifier comes with

a mandatory numeric value, like:

depth:12;

The number after depth designates how many bytes from the beginning of the payload will be checked.

Example:

8.7. Payload Keywords

57

Suricata User Guide, Release 7.0.0

PAYLOAD

depth

content:"def"; depth:3; x

content:"abc”; depth:3;

8.7.4 startswith

The startswith keyword is similar to depth. It takes no arguments and must follow a content keyword. It modifies
the content to match exactly at the start of a buffer.

Example:

content:"GET|20|"; startswith;

startswith is a short hand notation for:

content:"GET|[20|"; depth:4; offset:0;

startswith cannot be mixed with depth, offset, within or distance for the same pattern.

8.7.5 endswith

The endswith keyword is similar to isdataat:!1,relative;. It takes no arguments and must follow a content
keyword. It modifies the content to match exactly at the end of a buffer.

Example:

content:".php"; endswith;

endswith is a short hand notation for:

content:".php"; isdataat:!1,relative;

endswith cannot be mixed with offset, within or distance for the same pattern.

58 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

8.7.6 offset

The offset keyword designates from which byte in the payload will be checked to find a match. For instance offset:3;
checks the fourth byte and further.

PAYLOAD

i_abadefghlj

hmemmmm

offset

content:"abc”; offset:3; x

content:"def"; offset:3;

The keywords offset and depth can be combined and are often used together.

For example:

content:"def"; offset:3; depth:3;

If this was used in a signature, it would check the payload from the third byte till the sixth byte.

8.7. Payload Keywords 59

Suricata User Guide, Release 7.0.0

PAYLOAD

abcE

depth
offset

content."def"; offset.3; depth:3;

8.7.7 distance

The keyword distance is a relative content modifier. This means it indicates a relation between this content keyword
and the content preceding it. Distance has its influence after the preceding match. The keyword distance comes with a
mandatory numeric value. The value you give distance, determines the byte in the payload from which will be checked
for a match relative to the previous match. Distance only determines where Suricata will start looking for a pattern.
So, distance:5; means the pattern can be anywhere after the previous match + 5 bytes. For limiting how far after the
last match Suricata needs to look, use 'within'.

The absolute value for distance must be less than or equal to IMB (1048576).

Examples of distance:
content;"abc™; content:"kim”; distance: 0,
1 2 3

The distance (3), tells how the second (2)
content relates to the first (1) content.

60 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

distance

content:"abe™: content:"kim™: distance: 0: x

M checked area using 'distance’

content:"abc”; content:"def"; distance:0; l/

content:"abe™: content:"bed”; distance:0; x

8.7. Payload Keywords 61

Suricata User Guide, Release 7.0.0

distance
distance

content:."abc”; content:"def"; distance:0; f

content:"abe™ content:"def"; distance:4; v

Distance can also be a negative number. It can be used to check for matches with partly the same content (see example)
or for a content even completely before it. This is not very often used though. It is possible to attain the same results
with other keywords.

content:"abc™; content:"bed™; distance:-2; v

62 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

8.7.8 within

The keyword within is relative to the preceding match. The keyword within comes with a mandatory numeric value.
Using within makes sure there will only be a match if the content matches with the payload within the set amount of
bytes. Within can not be 0 (zero)

The absolute value for within must be less than or equal to 1IMB (1048576).

Example:
content:"abc”™; content:"kim™ within:3:

Y

1 9 3

The keyword within (3), tells how the second
(2) content relates to the first (1) content.

Example of matching with within:

PAYLOAD

abcddflghiij

]

content:"abc”; content:"def’; within:3;

content;"abc”; content:"fgh”; within:3; x

The second content has to fall/come 'within 3 ' from the first content.

As mentioned before, distance and within can be very well combined in a signature. If you want Suricata to check a
specific part of the payload for a match, use within.

8.7. Payload Keywords 63

Suricata User Guide, Release 7.0.0

within
distance

content:"abc”; content:"del"; distance:0; within:3; x

within
distance

cantent:"abc™; content"def”; distance:1; within:4; b/

8.7.9 rawbytes

The rawbytes keyword has no effect but is included to be compatible with signatures that use it, for example signatures
used with Snort.

64 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

8.7.10 isdataat

The purpose of the isdataat keyword is to look if there is still data at a specific part of the payload. The keyword starts
with a number (the position) and then optional followed by 'relative’ separated by a comma and the option rawbytes.
You use the word 'relative' to know if there is still data at a specific part of the payload relative to the last match.

So you can use both examples:

isdataat:512;

isdataat:50, relative;

The first example illustrates a signature which searches for byte 512 of the payload. The second example illustrates a
signature searching for byte 50 after the last match.

You can also use the negation (!) before isdataat.

PAYLOAD
abcldefghi]
isdataat
content:"abc™; isdataat:c, relative:
content:"abc”; isdataat8, relative; x

8.7.11 bsize

With the bsize keyword, you can match on the length of the buffer. This adds precision to the content match, previously
this could have been done with isdataat.

An optional operator can be specified; if no operator is present, the operator will default to '=". When a relational

operator is used, e.g., '<', '>' or '<>' (range), the bsize value will be compared using the relational operator. Ranges are
inclusive.

If one or more content keywords precedes bsize, each occurrence of content will be inspected and an error will
be raised if the content length and the bsize value prevent a match.

Format:

bsize:<number>;
bsize:=<number>;
bsize:<<number>;

(continues on next page)

8.7. Payload Keywords 65

Suricata User Guide, Release 7.0.0

(continued from previous page)

bsize:><number>;
bsize:<lo-number><><hi-number>;

Examples of bsize in a rule:
alert dns any any -> any any (msg:"bsize exact buffer size"; dns.query; content:"google.com"; bsize:10; sid:1; rev:1;)
alert dns any any -> any any (msg:"bsize less than value"; dns.query; content:"google.com"; bsize:<25; sid:2; rev:1;)

alert dns any any -> any any (msg:"bsize buffer less than or equal value"; dns.query; content:"google.com"; bsize:<=20;
sid:3; rev:1;)

alert dns any any -> any any (msg:"bsize buffer greater than value"; dns.query; content:"google.com"; bsize:>8; sid:4;
rev:1;)

alert dns any any -> any any (msg:"bsize buffer greater than or equal value"; dns.query; content:"google.com";
bsize:>=8; sid:5; rev:1;)

alert dns any any -> any any (msg:"bsize buffer range value"; dns.query; content:"google.com"; bsize:8<>20; sid:6;
rev:1;)

alert dns any any -> any any (msg:"test bsize rule"; dns.query; content:"short"; bsize:<10; sid:124; rev:1;)
alert dns any any -> any any (msg:"test bsize rule"; dns.query; content:"longer string"; bsize:>10; sid:125; rev:1;)

alert dns any any -> any any (msg:"test bsize rule"; dns.query; content:"middle"; bsize:6<>15; sid:126; rev:1;)

8.7.12 dsize

With the dsize keyword, you can match on the size of the packet payload/data. You can use the keyword for example
to look for abnormal sizes of payloads which are equal to some n i.e. 'dsize:n' not equal 'dsize:!n' less than 'dsize:<n’'
or greater than 'dsize:>n' This may be convenient in detecting buffer overflows.

dsize cannot be used when using app/streamlayer protocol keywords (i.e. http.uri)

Format:

dsize:[<>!]number; || dsize:min<>max;

Examples of dsize values:

alert tcp any any -> any any (msg:"dsize exact size"; dsize:10; sid:1; rev:1;)

alert tcp any any -> any any (msg:"dsize less than value"; dsize:<10; sid:2; rev:1;)

alert tcp any any -> any any (msg:"dsize less than or equal value"; dsize:<=10; sid:3; rev:1;)
alert tcp any any -> any any (msg:"dsize greater than value"; dsize:>8; sid:4; rev:1;)

alert tcp any any -> any any (msg:"dsize greater than or equal value"; dsize:>=10; sid:5; rev:1;)
alert tcp any any -> any any (msg:"dsize range value"; dsize:8<>20; sid:6; rev:1;)

alert tcp any any -> any any (msg:"dsize not equal value"; dsize:!9; sid:7; rev:1;)

66 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

8.7.13 byte_test

The byte_test keyword extracts <num of bytes> and performs an operation selected with <operator> against the
value in <test value> at a particular <offset>. The <bitmask value> is applied to the extracted bytes (before
the operator is applied), and the final result will be right shifted one bit for each trailing ® in the <bitmask value>.

Format:

byte_test:<num of bytes> | <variable_name>, [!]<operator>, <test value>, <offset> [,
—relative] \
[,<endian>] [, string, <num type>][, dce][, bitmask <bitmask value>];

<num of bytes> The number of bytes selected from the packet to be con-
verted or the name of a byte_extract/byte_math variable.
<operator> * [!] Negation can prefix other operators
e <less than
* > greater than
* =equal
e <= less than or equal
* >= greater than or equal
* & bitwise AND
* " bitwise OR
<value> Value to test the converted value against [hex or decimal
accepted]
<offset> Number of bytes into the payload
[relative] Offset relative to last content match
[endian] Type of number being read: - big (Most significant byte
at lowest address) - little (Most significant byte at the
highest address)
[string] <num> * hex - Converted string represented in hex
¢ dec - Converted string represented in decimal
* oct - Converted string represented in octal
[dce] Allow the DCE module to determine the byte order
[bitmask] Applies the AND operator on the bytes converted
Example:

alert tcp any any -> any any \
(msg:"Byte_Test Example - Num = Value"; \
content:" |00 01 00 02|"; byte_test:2,=,0x01;)

alert tcp any any -> any any \
(msg:"Byte_Test Example - Num = Value relative to content"; \
content:" |00 01 00 02|"; byte_test:2,=,0x03,relative;)

alert tcp any any -> any any \
(msg:"Byte_Test Example - Num != Value"; content:" |00 01 00 02|"; \
byte_test:2,!=,0x06;)

alert tcp any any -> any any \

(continues on next page)

8.7. Payload Keywords 67

Suricata User Guide, Release 7.0.0

(continued from previous page)

(msg:"Byte_Test Example - Detect Large Values"; content:" |00 01 00 02]"; \
byte_test:2,>,1000,relative;)

alert tcp any any -> any any \
(msg:"Byte_Test Example - Lowest bit is set"; \
content:" |00 01 00 02|"; byte_test:2,&,0x01,relative;)

alert tcp any any -> any any (msg:"Byte_Test Example - Compare to String"; \
content:"foobar"; byte_test:4,=,1337,1,relative,string,dec;)

8.7.14 byte_math

The byte_math keyword adds the capability to perform mathematical operations on extracted values with an existing
variable or a specified value.

When relative is included, there must be a previous content or pcre match.
Note: if oper is / and the divisor is 0, there will never be a match on the byte_math keyword.

The result can be stored in a result variable and referenced by other rule options later in the rule.

Keyword | Modifier

content offset,depth,distance,within
byte_test offset,value

byte_jump | offset

isdataat offset

Format:

byte_math:bytes <num of bytes> | <variable-name> , offset <offset>, oper <operator>,.
—rvalue <rvalue>, \
result <result_var> [, relative] [, endian <endian>] [, string <number-type>] \
[, dce]l [, bitmask <value>];

68 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

<num of bytes>

The number of bytes selected from the packet or the
name of a byte_extract variable.

<offset>

Number of bytes into the payload

oper <operator>

Mathematical operation to perform: +, -, *, /, <<, >>

rvalue <rvalue>

Value to perform the math operation with

result <result-var>

Where to store the computed value

[relative]

Offset relative to last content match

[endian <type>]

* big (Most significant byte at lowest address)

* little (Most significant byte at the highest address)

¢ dce (Allow the DCE module to determine the byte
order)

[string <num_type>]

* hex Converted data is represented in hex
¢ dec Converted data is represented in decimal
* oct Converted data is represented as octal

[dce]

Allow the DCE module to determine the byte order

[bitmask] <value>

The AND operator will be applied to the extracted value
The result will be right shifted by the number of bits
equal to the number of trailing zeros in the mask

Example:

alert tcp any any -> any any \
(msg:"Testing bytemath_body"; \
content:" |00 ®4 93 F3|"; \

content:" |00 00 00 07|"; distance:4; within:4; \
byte_math:bytes 4, offset 0, oper +, rvalue \

248, result var, relative;)

alert udp any any -> any any \
1, 0, extracted_val, relative; \

(byte_extract:

byte_math: bytes 1, offset 1, oper +, rvalue extracted_val, result var; \

byte_test: 2, =, var,

msg:"Byte extract and byte math with byte test verification";)

8.7.15 byte_jump

The byte_jump keyword allows for the ability to select a <num of bytes>from an <offset>and moves the detection
pointer to that position. Content matches will then be based off the new position.

Format:

byte_jump:<num of bytes> | <variable-name>, <offset> [, relative][, multiplier <mult_

—~value>] \

[, <endian>][, string, <num_type>][, align][, from_beginning][, from_end] \
[, post_offset <value>][, dce][, bitmask <value>];

8.7. Payload Keywords

69

Suricata User Guide, Release 7.0.0

<num of bytes>

The number of bytes selected from the packet to be con-
verted or the name of a byte_extract/byte_math variable.

<offset>

Number of bytes into the payload

[relative]

Offset relative to last content match

[multiplier] <value>

Multiple the converted byte by the <value>

[endian]

* big (Most significant byte at lowest address)
* little (Most significant byte at the highest address)

[string] <num_type>

* hex Converted data is represented in hex
* dec Converted data is represented in decimal
 oct Converted data is represented as octal

[align]

Rounds the number up to the next 32bit boundary

[from_beginning]

Jumps forward from the beginning of the packet, instead
of where the detection pointer is set

[from_end]

Jump will begin at the end of the payload, instead of
where the detection point is set

[post_offset] <value>

After the jump operation has been performed, it will
jump an additional number of bytes specified by <value>

[dce]

Allow the DCE module to determine the byte order

[bitmask] <value>

The AND operator will be applied by <value> and the

converted bytes, then jump operation is performed

Example:

alert tcp any any -> any any \
(msg:"Byte_Jump Example"; \
content:"Alice"; byte_jump:2,0; content:"Bob";)

alert tcp any any -> any any \
(msg:"Byte_Jump Multiple Jumps"; \
byte_jump:2,0; byte_jump:2,0,relative; content:"foobar"; distance:0; within:6;)

alert tcp any any -> any any \
(msg:"Byte_Jump From the End -8 Bytes"; \
byte_jump:0,0, from_end, post_offset -8; \
content:"|6c 33 33 74|"; distance:0 within:4;)

8.7.16 byte_extract

The byte_extract keyword extracts <num of bytes> at a particular <offset> and stores it in <var_name>. The
value in <var_name> can be used in any modifier that takes a number as an option and in the case of byte_test it
can be used as a value.

Format:

byte_extract:<num of bytes>, <offset>, <var_name>, [,relative] [,multiplier <mult-value>

=1\

[,<endian>] [, dce] [, string [, <num_type>] [, align <align-value];

70 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

<num of bytes> The number of bytes selected from the packet to be ex-
tracted

<offset> Number of bytes into the payload

<var_name> The name of the variable in which to store the value

[relative] Offset relative to last content match

multiplier <value> multiply the extracted bytes by <mult-value> before stor-
ing

[endian] Type of number being read: - big (Most significant byte
at lowest address) - little (Most significant byte at the
highest address)

string] <num>
[el * hex - Converted string represented in hex

¢ dec - Converted string represented in decimal
* oct - Converted string represented in octal

[dce] Allow the DCE module to determine the byte order
align <align-value> Round the extracted value up to the next <align-value>
byte boundary post-multiplication (if any) ; <align-
value> may be 2 or 4

Keyword | Modifier

content offset,depth,distance,within
byte_test offset,value

byte_math | rvalue

byte_jump | offset

isdataat offset

Example:

alert tcp any any -> any any \

(msg:"Byte_Extract Example Using distance"; \

content:"Alice"; byte_extract:2,0,size; content:"Bob"; distance:size; within:3;.
—sid:1;)
alert tcp any any -> any any \

(msg:"Byte_Extract Example Using within"; \

flow:established, to_server; content:" |00 FF|"; \

byte_extract:1,0,len,relative; content:"|5c 00|"; distance:2; within:len; sid:2;)
alert tcp any any -> any any \

(msg:"Byte_Extract Example Comparing Bytes"; \

flow:established, to_server; content:" |00 FF|"; \

byte_extract:2,0,cmp_ver,relative; content:"FooBar"; distance:0; byte_test:2,=,
—cmp_ver,0; sid:3;)

8.7. Payload Keywords 71

Suricata User Guide, Release 7.0.0

8.7.17 rpc

The rpc keyword can be used to match in the SUNRPC CALL on the RPC procedure numbers and the RPC version.

You can modify the keyword by using a wild-card, defined with * With this wild-card you can match on all version
and/or procedure numbers.

RPC (Remote Procedure Call) is an application that allows a computer program to execute a procedure on another com-
puter (or address space). It is used for inter-process communication. See http://en.wikipedia.org/wiki/Inter-process_
communication

Format:

rpc:<application number>, [<version number>|*], [<procedure number>|*]>;

Example of the rpc keyword in a rule:

alert udp SEXTERNAL_NET any -> $SHOME_NET 111 (msg:"RPC portmap request yppasswdd"; rpc:100009,*,*;
reference:bugtraq,2763; classtype:rpc-portmap-decode; sid:1296; rev:4;)

8.7.18 replace

The replace content modifier can only be used in ips. It adjusts network traffic. It changes the content it follows (‘abc')
into another ('def’), see example:

content: “abc”; replace: “def"”;

.

PAYLOAD PAYLOAD
abc det

The replace modifier has to contain as many characters as the content it replaces. It can only be used with individual
packets. It will not work for Normalized Buffers like HTTP uri or a content match in the reassembled stream.

The checksums will be recalculated by Suricata and changed after the replace keyword is being used.

8.7.19 pcre (Perl Compatible Regular Expressions)
The keyword pcre matches specific on regular expressions. More information about regular expressions can be found
here http://en.wikipedia.org/wiki/Regular_expression.

The complexity of pcre comes with a high price though: it has a negative influence on performance. So, to mitigate
Suricata from having to check pcre often, pcre is mostly combined with 'content'. In that case, the content has to match
first, before pcre will be checked.

Format of pcre:

pcre:"/<regex>/opts";

Example of pcre. In this example there will be a match if the payload contains six numbers following:

72 Chapter 8. Suricata Rules

http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Regular_expression

Suricata User Guide, Release 7.0.0

pcre:"/[0-9] /"

Example of pcre in a signature:

drop tcp $SHOME_NET any -> $EXTERNAL_NET any (msg:"ET TROJAN Likely Bot Nick in IRC (USA +..)";
flow:established,to_server; flowbits:isset,is_proto_irc; content:"NICK "; pcre:"/NICK .*USA.*[0-9]{3,}/i"; refer-
ence:url,doc.emergingthreats.net/2008124; classtype:trojan-activity; sid:2008124; rev:2;)

There are a few qualities of pcre which can be modified:
* By default pcre is case-sensitive.
e The . (dot) is a part of regex. It matches on every byte except for newline characters.
* By default the payload will be inspected as one line.

These qualities can be modified with the following characters:

i pcre is case insensitive
3 pcre does check newline characters
m can make one line (of the payload) count as two lines

These options are perl compatible modifiers. To use these modifiers, you should add them to pcre, behind regex. Like
this:

pcre: "/<regex>/i";

Pcre compatible modifiers

There are a few pcre compatible modifiers which can change the qualities of pcre as well. These are:
e A: A pattern has to match at the beginning of a buffer. (In pcre » is similar to A.)
* E: Ignores newline characters at the end of the buffer/payload.

* G: Inverts the greediness.

"

Note: The following characters must be escaped inside the content: ; \

Suricata's modifiers

Suricata has its own specific pcre modifiers. These are:
* R: Match relative to the last pattern match. It is similar to distance:0;

* U: Makes pcre match on the normalized uri. It matches on the uri_buffer just like uricontent and content combined
with http_uri.U can be combined with /R. Note that R is relative to the previous match so both matches have to
be in the HTTP-uri buffer. Read more about HTTP URI Normalization.

8.7. Payload Keywords 73

Suricata User Guide, Release 7.0.0

content:"/index.”; http_uri; content:"htm”; http_uri; distance:0;
content:"index.”: hitp_uri: pere:"/htmI?$UR":

content"index.”; http_uri; pere™indext. htmI?/$U";

content:*findex.”; hitp_uri; content:"ntm"; http_uri: distance:0;
contentindex.”; http_uri; pcre”/htmi?E&UR"

content;"index."; http_uri; pore:”Mindex\. himl 7L

content™findex.”; hitp_uri; content:"htm”; http_uri; distance:0;
contentindex."; hitp_uri; pere:"/htmI?$UR";

content:"index."; http_uri; pere™index html 25U

NN

N

- 4

74

Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

PAYLOAD

lindex.abc.htm

content:™findex.”; hitp_uri; content:"htm”; http_uri; distance:0; x

content."index.”; http_uri; pore"htmI?EUR"

content:"index.”; http_uri; pcre:"Mindex\ himl?/&U"; K

I: Makes pcre match on the HTTP-raw-uri. It matches on the same buffer as http_raw_uri. I can be combined
with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-raw-uri buffer.
Read more about HTTP URI Normalization.

P: Makes pcre match on the HTTP- request-body. So, it matches on the same buffer as http_client_body. P can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-request
body.

Q: Makes pcre match on the HTTP- response-body. So, it matches on the same buffer as http_server_body. Q
can be combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-
response body.

H: Makes pcre match on the HTTP-header. H can be combined with /R. Note that R is relative to the previous
match so both matches have to be in the HTTP-header body.

D: Makes pcre match on the unnormalized header. So, it matches on the same buffer as http_raw_header. D can
be combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-raw-
header.

M: Makes pcre match on the request-method. So, it matches on the same buffer as http_method. M can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-method
buffer.

C: Makes pcre match on the HTTP-cookie. So, it matches on the same buffer as http_cookie. C can be combined
with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-cookie buffer.

S: Makes pcre match on the HTTP-stat-code. So, it matches on the same buffer as http_stat_code. S can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-stat-
code buffer.

Y: Makes pcre match on the HTTP-stat-msg. So, it matches on the same buffer as http_stat_msg. Y can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-stat-msg
buffer.

B: You can encounter B in signatures but this is just for compatibility. So, Suricata does not use B but supports
it so it does not cause errors.

0: Overrides the configures pcre match limit.

V: Makes pcre match on the HTTP-User-Agent. So, it matches on the same buffer as http_user_agent. V can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-User-
Agent buffer.

8.7.

Payload Keywords 75

Suricata User Guide, Release 7.0.0

e W: Makes pcre match on the HTTP-Host. So, it matches on the same buffer as http_host. W can be combined
with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-Host buffer.

8.8 Changes from PCRE1 to PCRE2

The upgrade from PCRE1 to PCRE2 changes the behavior for some PCRE expressions.

* \I is a valid pcre in PCREI, with a useless escape, so equivalent to I, but it is no longer the case in PCRE2.
There are other characters than I exhibiting this pattern

e [\d-a] is a valid pcre in PCRE1, with either a digit, a dash or the character a, but the dash must now be escaped
with PCRE2 as [\d\-a] to get the same behavior

e pcre2_substring_copy_bynumber now returns an error PCRE2_ERROR_UNSET instead of
pcre_copy_substring returning no error and giving an empty string. If the behavior of some use case
is no longer the expected one, please let us know.

8.9 Transformations

Transformation keywords turn the data at a sticky buffer into something else. Some transformations support options
for greater control over the transformation process

Example:

alert http any any -> any any (file_data; strip_whitespace; \
content: "window.navigate("; sid:1;)

This example will match on traffic even if there are one or more spaces between the navigate and (.

The transforms can be chained. They are processed in the order in which they appear in a rule. Each transform's output
acts as input for the next one.

Example:

alert http any any -> any any (http_request_line; compress_whitespace; to_sha256; \
content:"|54A9 7A8A BO9C 1B81 3725 2214 51D3 F997 FO15 9DD7 049E ES5AD CED3 945A FC79.
74011"; sid:1;)

Note: not all sticky buffers support transformations yet

8.9.1 dotprefix

Takes the buffer, and prepends a . character to help facilitate concise domain checks. For example, an input string
of hello.google.com would be modified and become .hello.google.com. Additionally, adding the dot allows
google.com to match against content:".google.com"

Example:

alert dns any any -> any any (dns.query; dotprefix; \
content:".microsoft.com"; sid:1;)

76 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

This example will match on windows.update.microsoft.com and maps.microsoft.com.au but not windows.
update. fakemicrosoft.com.

This rule can be used to match on the domain only; example:

alert dns any any -> any any (dns.query; dotprefix; \
content:".microsoft.com"; endswith; sid:1;)

This example will match on windows.update.microsoft.com but not windows.update.microsoft.com.au.

Finally, this rule can be used to match on the TLD only; example:

alert dns any any -> any any (dns.query; dotprefix; \
content:".co.uk"; endswith; sid:1;)

This example will match on maps.google.co.uk but not maps.google.co.nl.

8.9.2 strip_whitespace

Strips all whitespace as considered by the isspace() call in C.

Example:

alert http any any -> any any (file_data; strip_whitespace; \
content: "window.navigate("; sid:1;)

8.9.3 compress_whitespace

Compresses all consecutive whitespace into a single space.

8.9.4 to md>5

Takes the buffer, calculates the MD5 hash and passes the raw hash value on.

Example:

alert http any any -> any any (http_request_line; to_md5; \
content:" |54 A9 7A 8A BO® 9C 1B 81 37 25 22 14 51 D3 F9 97|"; sid:1;)

8.9.5 to_shat

Takes the buffer, calculates the SHA-1 hash and passes the raw hash value on.

Example:

alert http any any -> any any Chttp_request_line; to_shal; \
content:'"|54A9 7A8A BO9C 1B81 3725 2214 51D3 F997 FO15 9DD7|"; sid:1;)

8.9. Transformations 77

Suricata User Guide, Release 7.0.0

8.9.6 to_sha256

Takes the buffer, calculates the SHA-256 hash and passes the raw hash value on.

Example:

alert http any any -> any any Chttp_request_line; to_sha256; \
content:"|54A9 7A8A BO9C 1B81 3725 2214 51D3 F997 FO015 9DD7 049E ES5AD CED3 945A FC79.
~7401|"; sid:1;)

8.9.7 pcrexform

Takes the buffer, applies the required regular expression, and outputs the first captured expression.

Note: this transform requires a mandatory option string containing a regular expression.

This example alerts if http.request_line contains /dropper.php Example:

alert http any any -> any any (msg:"HTTP with pcrexform"; http.request_line; \
pcrexform: " [a-zA-Z]+\s+(.*)\s+HTTP"; content:"/dropper.php"; sid:1;)

8.9.8 url_decode

Decodes url-encoded data, ie replacing '+' with space and '%oHH' with its value. This does not decode unicode '%ouZZZZ!
encoding

8.9.9 xor

Takes the buffer, applies xor decoding.

Note: this transform requires a mandatory option which is the hexadecimal encoded xor key.

This example alerts if http.uri contains password= xored with 4-bytes key 0d®ac8£ff Example:

alert http any any -> any any (msg:"HTTP with xor"; http.uri; \
xor:"0d0ac8ff"; content:'"password="; sid:1;)

8.10 Prefiltering Keywords

8.10.1 fast_pattern

Suricata Fast Pattern Determination Explained

If the 'fast_pattern' keyword is explicitly set in a rule, Suricata will use that as the fast pattern match. The 'fast_pattern’
keyword can only be set once per rule. If 'fast_pattern' is not set, Suricata automatically determines the content to use
as the fast pattern match.

78 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

The following explains the logic Suricata uses to automatically determine the fast pattern match to use.

Be aware that if there are positive (i.e. non-negated) content matches, then negated content matches are ignored for fast
pattern determination. Otherwise, negated content matches are considered.

The fast_pattern selection criteria are as follows:

1.

Suricata first identifies all content matches that have the highest "priority" that are used in the signature. The
priority is based off of the buffer being matched on and generally 'http_*' buffers have a higher priority (lower
number is higher priority). See Appendix B for details on which buffers have what priority.

Within the content matches identified in step 1 (the highest priority content matches), the longest (in terms of
character/byte length) content match is used as the fast pattern match.

If multiple content matches have the same highest priority and qualify for the longest length, the one with the
highest character/byte diversity score ("Pattern Strength") is used as the fast pattern match. See Appendix C for
details on the algorithm used to determine Pattern Strength.

If multiple content matches have the same highest priority, qualify for the longest length, and the same highest
Pattern Strength, the buffer ("list_id") that was registered last is used as the fast pattern match. See Appendix B
for the registration order of the different buffers/lists.

If multiple content matches have the same highest priority, qualify for the longest length, the same highest Pattern
Strength, and have the same list_id (i.e. are looking in the same buffer), then the one that comes first (from left-
to-right) in the rule is used as the fast pattern match.

It is worth noting that for content matches that have the same priority, length, and Pattern Strength, 'http_stat_msg',
'http_stat_code', and 'http_method' take precedence over regular 'content' matches.

Appendices

Appendix A - Buffers, list_id values, and Registration Order for Suricata 1.3.4

This should be pretty much the same for Suricata 1.1.x - 1.4.x.

list_id | Content Modifier Keyword Buffer Name Registration Order
1 <none> (regular content match) | DETECT_SM_LIST_PMATCH 1 (first)
2 http_uri DETECT_SM_LIST UMATCH 2

6 http_client_body DETECT_SM_LIST_HCBDMATCH | 3

7 http_server_body DETECT_SM_LIST_HSBDMATCH | 4

8 http_header DETECT_SM_LIST_HHDMATCH 5

9 http_raw_header DETECT_SM_LIST_HRHDMATCH | 6

10 http_method DETECT_SM_LIST_HMDMATCH 7

11 http_cookie DETECT_SM_LIST_HCDMATCH 8

12 http_raw_uri DETECT_SM_LIST_HRUDMATCH | 9

13 http_stat_msg DETECT_SM_LIST_HSMDMATCH | 10

14 http_stat_code DETECT_SM_LIST_HSCDMATCH | 11

15 http_user_agent DETECT_SM_LIST HUADMATCH | 12 (last)

Note: registration order doesn't matter when it comes to determining the fast pattern match for Suricata 1.3.4 but list_id
value does.

8.10. Prefiltering Keywords 79

Suricata User Guide, Release 7.0.0

Appendix B - Buffers, list_id values, Priorities, and Registration Order for Suricata 2.0.7

This should be pretty much the same for Suricata 2.0.x.

Priority (lower number is | Registration | Content Modifier | Buffer Name list_id

higher priority) Order Keyword

3 11 <none> (regular con- | DE- 1

tent match) TECT_SM_LIST_PMATCH

3 12 http_method DE- 12
TECT_SM_LIST_HMDMATCH

3 13 http_stat_code DE- 9
TECT_SM_LIST_HSCDMATCH

3 14 http_stat_msg DE- 8
TECT_SM_LIST_HSMDMATCH

2 1 (first) http_client_body DE- 4
TECT_SM_LIST_HCBDMATCH

2 2 http_server_body DE- 5
TECT_SM_LIST_HSBDMATCH

2 3 http_header DE- 6
TECT_SM_LIST_HHDMATCH

2 4 http_raw_header DE- 7
TECT_SM_LIST_HRHDMATCH

2 5 http_uri DE- 2
TECT_SM_LIST_UMATCH

2 6 http_raw_uri DE- 3
TECT_SM_LIST_HRUDMATCH

2 7 http_host DE- 10
TECT_SM_LIST_HHHDMATCH

2 8 http_raw_host DE- 11
TECT_SM_LIST_HRHHDMAT|CH

2 9 http_cookie DE- 13
TECT_SM_LIST_HCDMATCH

2 10 http_user_agent DE- 14
TECT_SM_LIST_HUADMATCH

2 15 (last) dns_query DE- 20
TECT_SM_LIST_DNSQUERY |MAT(

Note: list_id value doesn't matter when it comes to determining the fast pattern match for Suricata 2.0.7 but registration
order does.

Appendix C - Pattern Strength Algorithm

From detect-engine-mpm.c. Basically the Pattern Strength "score" starts at zero and looks at each character/byte in the
passed in byte array from left to right. If the character/byte has not been seen before in the array, it adds 3 to the score
if it is an alpha character; else it adds 4 to the score if it is a printable character, 0x00, 0x01, or OxFF; else it adds 6 to
the score. If the character/byte has been seen before it adds 1 to the score. The final score is returned.

/%% \brief Predict a strength value for patterns

Patterns with high character diversity score higher.
Alpha chars score not so high

(continues on next page)

80 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

(continued from previous page)

Other printable + a few common codes a little higher
Everything else highest.
Longer patterns score better than short patters.

\param pat pattern
\param patlen length of the pattern

\retval s pattern score
*/
uint32_t PatternStrength(uint8_t *pat, uintl6_t patlen) {
uint8_t a[256];
memset (&, 0 ,sizeof(a));
uint32_t s = 0;
uintl6e_t u = 0;
for (u = 0; u < patlen; u++) {
if (afpat[u]] == 0) {
if (isalpha(pat[ul))
S += 3;
else if (isprint(pat[u]) || pat[u] == 0x00 || pat[u] == 0x01 || pat[u] ==.

—0xFF)
S += 4;
else
S += 6;
a[patful]l = 1;
} else {
S++;
}
}
return s;
}

Only one content of a signature will be used in the Multi Pattern Matcher (MPM). If there are multiple contents, then
Suricata uses the 'strongest' content. This means a combination of length, how varied a content is, and what buffer it
is looking in. Generally, the longer and more varied the better. For full details on how Suricata determines the fast
pattern match, see Suricata Fast Pattern Determination Explained.

Sometimes a signature writer concludes he wants Suricata to use another content than it does by default.

For instance:

User-agent: Mozilla/5.0 Badness;

content: "User-Agent|3A[";
content:"Badness"; distance:0;

In this example you see the first content is longer and more varied than the second one, so you know Suricata will use
this content for the MPM. Because 'User-Agent:' will be a match very often, and 'Badness' appears less often in network
traffic, you can make Suricata use the second content by using 'fast_pattern'.

content: "User-Agent|3A|[";
content: "Badness"; distance:0; fast_pattern;

The keyword fast_pattern modifies the content previous to it.

8.10. Prefiltering Keywords 81

Suricata User Guide, Release 7.0.0

content:"User-Agent| 34)”;
content:"Badness"; distance:0; fast_pattern,;

t:h-.._____..-"'"

Fast-pattern can also be combined with all previous mentioned keywords, and all mentioned HTTP-modifiers.

fast_pattern:only

Sometimes a signature contains only one content. In that case it is not necessary Suricata will check it any further
after a match has been found in MPM. If there is only one content, the whole signature matches. Suricata notices
this automatically. In some signatures this is still indicated with 'fast_pattern:only;'. Although Suricata does not need
fast_pattern:only, it does support it.

fast_pattern:'chop’

If you do not want the MPM to use the whole content, you can use fast_pattern 'chop'.

For example:

content: "aaaaaaaaabc"; fast_pattern:8,4;

This way, MPM uses only the last four characters.

8.10.2 prefilter

The prefilter engines for other non-MPM keywords can be enabled in specific rules by using the 'prefilter' keyword.

In the following rule the TTL test will be used in prefiltering instead of the single byte pattern:

alert ip any any -> any any (ttl:123; prefilter; content:"a"; sid:1;)

For more information on how to configure the prefilter engines, see Prefilter Engines

8.11 Flow Keywords

8.11.1 flowbits

Flowbits consists of two parts. The first part describes the action it is going to perform, the second part is the name of
the flowbit.

There are multiple packets that belong to one flow. Suricata keeps those flows in memory. For more information see
Flow Settings. Flowbits can make sure an alert will be generated when for example two different packets match. An
alert will only be generated when both packets match. So, when the second packet matches, Suricata has to know if
the first packet was a match too. Flowbits marks the flow if a packet matches so Suricata 'knows' it should generate an
alert when the second packet matches as well.

Flowbits have different actions. These are:

flowbits: set, name
Will set the condition/'name’, if present, in the flow.

82 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

flowbits: isset, name
Can be used in the rule to make sure it generates an alert when the rule matches and the condition is set in the
flow.

flowbits: toggle, name
Reverses the present setting. So for example if a condition is set, it will be unset and vice-versa.

flowbits: unset, name
Can be used to unset the condition in the flow.

flowbits: isnotset, name
Can be used in the rule to make sure it generates an alert when it matches and the condition is not set in the flow.

flowbits: noalert
No alert will be generated by this rule.

Example:

userlogin; set

Packet 1 Packet 2

userlogin

alert hitp $HOME [NET any -=> $EXTERMNAL_NET any
(msg: “Logged In Wser Saying Blah"; content:"userlogin®;
flowhits:set, userogin; flowhits:noalert;)

alert http FHOME_NET any -= $EXTERMAL_NET any
(msg: “Logged In User Saying Blah";flowbil 5tisset,
userlogin; content;"blah”; ;)

When you take a look at the first rule you will notice it would generate an alert if it would match, if it were not for the
'flowbits: noalert' at the end of that rule. The purpose of this rule is to check for a match on 'userlogin' and mark that
in the flow. So, there is no need for generating an alert. The second rule has no effect without the first rule. If the first
rule matches, the flowbits sets that specific condition to be present in the flow. Now with the second rule there can be
checked whether or not the previous packet fulfills the first condition. If at that point the second rule matches, an alert
will be generated.

It is possible to use flowbits several times in a rule and combine the different functions.
It is also possible to perform an OR operation with flowbits with | op.

Example::
alert http any any -> any any (msg: "Userl or User2 logged in"; content:"login"; flowbits:isset,user1|user2; sid:1;)

8.11. Flow Keywords 83

Suricata User Guide, Release 7.0.0

This can be used with either isset or isnotset action.

8.11.2 flow

The flow keyword can be used to match on direction of the flow, so to/from client or to/from server. It can also match

if the flow is established or not. The flow keyword can also be used to say the signature has to m
(only_stream) or on packet only (no_stream).

So with the flow keyword you can match on:

to_client
Match on packets from server to client.

to_server
Match on packets from client to server.

from_client
Match on packets from client to server (same as to_server).

from_server
Match on packets from server to client (same as to_client).

established
Match on established connections.

not_established
Match on packets that are not part of an established connection.

stateless
Match on packets that are and are not part of an established connection.

only_stream
Match on packets that have been reassembled by the stream engine.

no_stream

atch on stream only

Match on packets that have not been reassembled by the stream engine. Will not match packets that have been

reassembled.

only_frag
Match packets that have been reassembled from fragments.

no_frag
Match packets that have not been reassembled from fragments.

Multiple flow options can be combined, for example:

flow:to_client, established
flow:to_server, established, only_stream
flow:to_server, not_established, no_frag

The determination of established depends on the protocol:

» For TCP a connection will be established after a three way handshake.

84 Chapter 8

. Suricata Rules

Suricata User Guide, Release 7.0.0

Packet x Packet x+1

alert htp $HOME_NET any -> SEXTERMNAL_MET any
imsg: "Logged In User Saying Blah"; content:"blah®;
flow:established:)

* For other protocols (for example UDP), the connection will be considered established after seeing traffic from
both sides of the connection.

Packel x Packet x+1

alert hitp FHOME_NET any -= SEXTERMAL_NET any
(msg: “Logged In User Saying Blah"; content:"blah";
flow:established;)

8.11. Flow Keywords 85

Suricata User Guide, Release 7.0.0

8.11.3 flowint

Flowint allows storage and mathematical operations using variables. It operates much like flowbits but with the addition
of mathematical capabilities and the fact that an integer can be stored and manipulated, not just a flag set. We can use
this for a number of very useful things, such as counting occurrences, adding or subtracting occurrences, or doing
thresholding within a stream in relation to multiple factors. This will be expanded to a global context very soon, so
users can perform these operations between streams.

The syntax is as follows:

flowint: name, modifier[, valuel;

Define a var (not required), or check that one is set or not set.

flowint: name, < +,-,=,>,<,>=,<=,==, != >, value;
flowint: name, (isset|isnotset);

Compare or alter a var. Add, subtract, compare greater than or less than, greater than or equal to, and less than or equal
to are available. The item to compare with can be an integer or another variable.

For example, if you want to count how many times a username is seen in a particular stream and alert if it is over 5.

alert tcp any any -> any any (msg:"Counting Usernames'; content:"jonkman"; \
flowint: usernamecount, +, 1; noalert;)

This will count each occurrence and increment the var usernamecount and not generate an alert for each.

Now say we want to generate an alert if there are more than five hits in the stream.

alert tcp any any -> any any (msg:"More than Five Usernames!'"; content:"jonkman"; \
flowint: usernamecount, +, 1; flowint:usernamecount, >, 5;)

So we'll get an alert ONLY if usernamecount is over five.

So now let's say we want to get an alert as above but NOT if there have been more occurrences of that username logging
out. Assuming this particular protocol indicates a log out with "jonkman logout", let's try:

alert tcp any any -> any any (msg:"Username Logged out"; content:"logout jonkman'"; \
flowint: usernamecount, -, 1; flowint:usernamecount, >, 5;)

So now we'll get an alert ONLY if there are more than five active logins for this particular username.

This is a rather simplistic example, but I believe it shows the power of what such a simple function can do for rule
writing. I see a lot of applications in things like login tracking, IRC state machines, malware tracking, and brute force
login detection.

Let's say we're tracking a protocol that normally allows five login fails per connection, but we have vulnerability where
an attacker can continue to login after that five attempts and we need to know about it.

alert tcp any any -> any any (msg:"Start a login count"; content:"login failed"; \
flowint:loginfail, notset; flowint:loginfail, =, 1; noalert;)

So we detect the initial fail if the variable is not yet set and set it to 1 if so. Our first hit.

alert tcp any any -> any any (msg:"Counting Logins"; content:"login failed"; \
flowint:loginfail, isset; flowint:loginfail, +, 1; noalert;)

86 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

We are now incrementing the counter if it's set.

alert tcp any any -> any any (msg:"More than Five login fails in a Stream"; \
content:"login failed"; flowint:loginfail, isset; flowint:loginfail, >, 5;)

Now we'll generate an alert if we cross five login fails in the same stream.

But let's also say we also need alert if there are two successful logins and a failed login after that.

alert tcp any any -> any any (msg:"Counting Good Logins'"; \
content:"login successful"; flowint:loginsuccess, +, 1; noalert;)

Here we're counting good logins, so now we'll count good logins relevant to fails:

alert tcp any any -> any any (msg:"Login fail after two successes"; \
content:"login failed"; flowint:loginsuccess, isset; \
flowint:loginsuccess, =, 2;)

Here are some other general examples:

alert tcp any any -> any any (msg:"Setting a flowint counter"; content:"GET"; \
flowint:myvar, notset; flowint:maxvar,notset; \
flowint:myvar,=,1; flowint: maxvar,=,6;)

alert tcp any any -> any any (msg:"Adding to flowint counter"; \
content: "Unauthorized"; flowint:myvar,isset; flowint: myvar,+,2;)

alert tcp any any -> any any (msg:"when flowint counter is 3 create new counter"; \
content: "Unauthorized"; flowint:myvar, isset; flowint:myvar,==,3; \
flowint:cntpackets,notset; flowint:cntpackets, =, 0;)

alert tcp any any -> any any (msg:"count the rest without generating alerts"; \
flowint:cntpackets,isset; flowint:cntpackets, +, 1; noalert;)

alert tcp any any -> any any (msg:"fire this when it reach 6";
flowint: cntpackets, isset;
flowint: maxvar,isset; flowint: cntpackets, ==, maxvar;)

~

8.11.4 stream_size

The stream size option matches on traffic according to the registered amount of bytes by the sequence numbers. There
are several modifiers to this keyword:

> greater than

< less than

= equal

1= not equal

>= greater than or equal
<= less than or equal
Format

8.11. Flow Keywords 87

Suricata User Guide, Release 7.0.0

stream_size:<server|client |both|either>, <modifier>, <number>;

Example of the stream-size keyword in a rule:

alert tcp any any -> any any (stream_size:both, >, 5000; sid:1;)

8.11.5 flow.age

Flow age in seconds (integer)

Syntax:

flow.age: [op]<number>

The time can be matched exactly, or compared using the _op_ setting:

flow.age:3 # exactly 3
flow.age:<3 # smaller than 3 seconds
flow.age:>=2 # greater or equal than 2 seconds

Signature example:

alert tcp any any -> any any (msg:"Flow longer than one hour"; flow.age:>3600; flowbits:.
—,isnotset, onehourflow; flowbits: onehourflow, name; sid:1; rev:1;)

In this example, we combine flow.age and flowbits to get an alert on the first packet after the flow's age is older than one
hour.

8.12 Bypass Keyword

Suricata has a bypass keyword that can be used in signatures to exclude traffic from further evaluation.
The bypass keyword is useful in cases where there is a large flow expected (e.g. Netflix, Spotify, YouTube).

The bypass keyword is considered a post-match keyword.

8.12.1 bypass

Bypass a flow on matching http traffic.

Example:

alert http any any -> any any (content:"suricata.io"; \
http_host; bypass; sid:10001; rev:1;)

88 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

8.13 HTTP Keywords

Using the HTTP specific sticky bufters provides a way to efficiently inspect specific fields of the HTTP protocol. After
specifying a sticky buffer in a rule it should be followed by one or more Payload Keywords.

Many of the sticky buffers have legacy variants in the older "content modifier" notation. See Modifier Keywords for
more information. As a refresher:

« 'sticky buffers' are placed first and all keywords following it apply to that buffer, for instance:

alert http any any -> any any (http.response_line; content:"403 Forbidden"; sid:1;)

Sticky buffers apply to all "payload" keywords following it. E.g. content, isdataat, byte_test, pcre.

¢ 'content modifiers' look back in the rule, e.g.:

alert http any any -> any any (content:"index.php"; http_uri; sid:1;)

Content modifiers only apply to the preceding content keyword.

The following request keywords are available:

Keyword Legacy Content Modifier | Direction
http.uri http_uri Request
http.uri.raw http_raw_uri Request
http.method http_method Request
http.request_line http_request_line (*) Request
http.request_body | http_client_body Request
http.header http_header Both
http.header.raw http_raw_header Both
http.cookie http_cookie Both
http.user_agent http_user_agent Request
http.host http_host Request
http.host.raw http_raw_host Request
http.accept http_accept (*) Request
http.accept_lang http_accept_lang (*) Request
http.accept_enc http_accept_enc (¥) Request
http.referer http_referer (*) Request
http.connection http_connection (*) Both
file.data file_data (*) Both
http.content_type http_content_type (*) Both
http.content_len http_content_len (*) Both
http.start http_start (*) Both
http.protocol http_protocol (*) Both
http.header_names | http_header_names (*) Both

*) sticky buffer

The following response keywords are available:

8.13. HTTP Keywords 89

Suricata User Guide, Release 7.0.0

*) sticky buffer

Keyword Legacy Content Modifier | Direction
http.stat_msg http_stat_msg Response
http.stat_code http_stat_code Response
http.response_line http_response_line (*) Response
http.header http_header Both
http.header.raw http_raw_header Both
http.cookie http_cookie Both
http.response_body | http_server_body Response
http.server N/A Response
http.location N/A Response
file.data file_data (*) Both
http.content_type http_content_type (*) Both
http.content_len http_content_len (*) Both
http.start http_start (*) Both
http.protocol http_protocol (*) Both
http.header_names | http_header_names (*) Both

8.13.1 HTTP Primer

It is important to understand the structure of HTTP requests and responses. A simple example of a HTTP request and

response follows:

HTTP request

GET /index.html HTTP/1.0\r\n

GET is the request method. Examples of methods are: GET, POST, PUT, HEAD, etc. The URI path is /index.html
and the HTTP version is HTTP/1.0. Several HTTP versions have been used over the years; of the versions 0.9, 1.0 and
1.1, 1.0 and 1.1 are the most commonly used today.

Example request with keywords:

HTTP

Keyword

GET /index.html HTTP/1.1\r\n

http.request_line

Host: www.oisf.net\r\n

http.header

Cookie: <cookie data>

http.cookie

Example request with finer grained keywords:

HTTP

Keyword

GET /index.html HTTP/1.1\r\n

http.method hztp.uri http.protocol

Host: www.oisf.net\r\n http.host
User-Agent: Mozilla/5.0\r\n http.user_agent
Cookie: <cookie data> http.cookie

HTTP response

HTTP/1.0 200 OK\r\n
<html>

(continues on next page)

90

Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

(continued from previous page)

<title> some page </title>
</HTML>

In this example, HTTP/1.0 is the HTTP version, 200 the response status code and OK the response status message.

Although cookies are sent in an HTTP header, you can not match on them with the http.header keyword. Cookies
are matched with their own keyword, namely http.cookie.

Each part of the table belongs to a so-called buffer. The HTTP method belongs to the method buffer, HTTP headers
to the header buffer etc. A buffer is a specific portion of the request or response that Suricata extracts in memory for
inspection.

All previous described keywords can be used in combination with a buffer in a signature. The keywords distance and
within are relative modifiers, so they may only be used within the same buffer. You can not relate content matches
against different buffers with relative modifiers.

8.13.2 http.method

With the http.method sticky buffer, it is possible to match specifically and only on the HTTP method buffer. The
keyword can be used in combination with all previously mentioned content modifiers such as: depth, distance,
offset, nocase and within.

Examples of methods are: GET, POST, PUT, HEAD, DELETE, TRACE, OPTIONS, CONNECT and PATCH.

Example of a method in a HTTP request:

GET/HTTR/L1

Host www.google.com

Connection: keep-alive

Accept:

application/xml application/xhtml+xml text/html;g=0.9,text/
plaing=0.8.image/pneg,**;g=0.5

Example of the purpose of method:

8.13. HTTP Keywords 91

Suricata User Guide, Release 7.0.0

content"GET™: v

content."GET"; http_method V’

v" match
x no maich

match in the payload

; no match in the payload

92 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

PAYLOAD

POST NEWS. htm! HTTP/L.0\A\n

content"GET";

content:"GET", http_method x

content:"POST"; http_method

8.13.3 http.uri and http.uri.raw

With the http.uri and the http.uri.raw sticky buffers, it is possible to match specifically and only on the request
URI buffer. The keyword can be used in combination with all previously mentioned content modifiers like depth,
distance, offset, nocase and within.

The uri has two appearances in Suricata: the uri.raw and the normalized uri. The space for example can be indicated
with the heximal notation %?20. To convert this notation in a space, means normalizing it. It is possible though to match
specific on the characters %20 in a uri. This means matching on the uri.raw. The uri.raw and the normalized uri are
separate buffers. So, the uri.raw inspects the uri.raw buffer and can not inspect the normalized buffer.

Note: uri.raw never has any spaces in it. With this request line GET /uid=0(root) gid=0(root) HTTP/1.1,
the http.uri.raw will match /uid=0(root) and http.protocol will match gid=0(root) HTTP/1.1 Reference:
https://redmine.openinfosecfoundation.org/issues/2881

Example of the URI in a HTTP request:

GET lindex.html HTTP/1.0\r\n

Example of the purpose of http.uri:

8.13. HTTP Keywords 93

https://redmine.openinfosecfoundation.org/issues/2881

Suricata User Guide, Release 7.0.0

PAYLOAD

r

content: “findex. html";, hitp_uri;
content: "GET™; http_uri; x

content: “findex™, hittp_uri; content: “html";
http_uri; withim: 5;

content: “findex™; hitp_uri; depth:&;

8.13.4 uricontent

The uricontent keyword has the exact same effect as the http.uri sticky buffer. uricontent is a deprecated
(although still supported) way to match specifically and only on the request URI buffer.

Example of uricontent:

alert tcp SHOME_NET any -> $SEXTERNAL_NET $HTTP_PORTS (msg:"ET TROJAN Possible Vundo
Trojan Variant reporting to Controller"; flow:established,to_server; content:"POST "; depth:5; uricon-
tent:"/frame.html?"; urilen: > 80; classtype:trojan-activity; reference:url,doc.emergingthreats.net/2009173;
reference:url,www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/ VIRUS/TROJAN_Vundo; sid:2009173; rev:2;)

The difference between http.uri and uricontent is the syntax:

uricontent: “abc”;

~_ 7T

content: "abc”; http_uri

When authoring new rules, it is recommended that the http.uri content sticky buffer be used rather than the depre-
cated uricontent keyword.

94 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

8.13.5 urilen

The urilen keyword is used to match on the length of the request URL. It is possible to use the < and > operators,
which indicate respectively smaller than and larger than.

The format of urilen is:

urilen:3;

Other possibilities are:

urilen:1;

urilen:>1;

urilen:<10;

urilen:10<>20; (bigger than 10, smaller than 20)

Example:

PAYLOAD

fpicturesHTTP/1.0

urilen:10:

urilen:<10: x
urilen:5<>20;
urilen:20: x

urilen:=4;

Example of urilen in a signature:

alert tcp SHOME_NET any -> $SEXTERNAL_NET $HTTP_PORTS (msg:"ET TROJAN Possible Vundo
Trojan Variant reporting to Controller"; flow:established,to_server; content:"POST "; depth:5; uricon-
tent:"/frame.html?"; urilen: > 80; classtype:trojan-activity; reference:url,doc.emergingthreats.net/2009173;

reference:url,www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/ VIRUS/TROJAN_Vundo; sid:2009173; rev:2;)

You can also append norm or raw to define what sort of buffer you want to use (normalized or raw buffer).

8.13. HTTP Keywords 95

Suricata User Guide, Release 7.0.0

8.13.6 http.protocol

The http.protocol inspects the protocol field from the HTTP request or response line. If the request line is 'GET /
HTTP/1.0rn', then this buffer will contain 'HTTP/1.0'.

Example:

alert http any any -> any any (flow:to_server; http.protocol; content:"HTTP/1.0"; sid:1;)

http.protocol replaces the previous keyword name: “http_protocol. You may continue to use the previous name,
but it's recommended that rules be converted to use the new name.

Example:

alert http any any -> any any (flow:to_server; http.protocol; content:"HTTP/1.0"; sid:1;)

8.13.7 http.request_line

The http.request_line forces the whole HTTP request line to be inspected.

Example:

alert http any any -> any any (http.request_line; content:"GET / HTTP/1.0"; sid:1;)

8.13.8 http.header and http.header.raw

With the http.header sticky buffer, it is possible to match specifically and only on the HTTP header buffer. This
contains all of the extracted headers in a single buffer, except for those indicated in the documentation that are not
able to match by this buffer and have their own sticky buffer (e.g. http.cookie). The sticky buffer can be used in
combination with all previously mentioned content modifiers, like depth, distance, offset, nocase and within.

Note: the header buffer is normalized. Any trailing whitespace and tab characters are removed. See: https:
/Nists.openinfosecfoundation.org/pipermail/oisf-users/2011-October/000935.html. If there are multiple

values for the same header name, they are concatenated with a comma and space (", ") between each of
them. See RFC 2616 4.2 Message Headers. To avoid that, use the http.header.raw keyword.

Example of a header in a HTTP request:

GET IHTTP/1.1

Host: www.google.com

Connection: keep-alive

Accept:

applicationfxml,application/xhtml+xml, text/html;q=0.9,
text/plain;g=0.8,imagelpng,**;q=0.5

Example of the purpose of http.header:

96 Chapter 8. Suricata Rules

https://lists.openinfosecfoundation.org/pipermail/oisf-users/2011-October/000935.html
https://lists.openinfosecfoundation.org/pipermail/oisf-users/2011-October/000935.html

Suricata User Guide, Release 7.0.0

PAYLOAD

-
.

GETH# HTTP/1.1
Host: [www.google.com|

Connection: keep-alive

content:"www.google.com”; hitp_header ;

content:"GET"; hitp_header; x

PAYLOAD
[GET) HTTPIL1

Host www.google.com

Connection:|keep-alive

content:"GET™;

content."KEEP-ALIVE"; nocase; http_header

8.13.9 http.cookie

With the http. cookie sticky buffer it is possible to match specifically on the HTTP cookie contents. Keywords like
depth, distance, offset, nocase and within can be used with http.cookie.

Note that cookies are passed in HTTP headers but Suricata extracts the cookie data to http.cookie and will not match
cookie content put in the http.header sticky buffer.

Example of a cookie in a HTTP request:

Examples:

GET / HTTP/1.1
User-Agent: Mozilla/5.0
Host: www.example.com
Cookie: PHPSESSIONID=1234
Connection: close

Example http.cookie keyword in a signature:

alert http $HOME_NET any -> $EXTERNAL _NET any (msg:"HTTP Request with Cookie";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"/"; fast_pattern; http.cookie; con-
tent:"PHPSESSIONID="; startswith; classtype:bad-unknown; sid:123; rev:1;)

8.13. HTTP Keywords 97

Suricata User Guide, Release 7.0.0

8.13.10 http.user_agent

The http.user_agent sticky buffer is part of the HTTP request header. It makes it possible to match specifically on
the value of the User-Agent header. It is normalized in the sense that it does not include the _"User-Agent: "_ header
name and separator, nor does it contain the trailing carriage return and line feed (CRLF). The keyword can be used in
combination with all previously mentioned content modifiers like depth, distance, offset, nocase and within.
Note that the pcre keyword can also inspect this buffer when using the /V modifier.

Normalization: leading spaces are not part of this buffer. So "User-Agent: rn" will result in an empty http.
user_agent buffer.

Example of the User-Agent header in a HTTP request:

GETIHTTP/L.1

HosL www.google.com

Connection: keep-alive

User-Agent: Mozilla/5.0 (¥11; U; Linux i686; en-US)
AppleWebKit/534.16

{KHTML, like Gecko) Ubuntw/10.10
Chromium/10.0,618.0 Chromel10.0.618.0
Safari/534.16

Example of the purpose of http.user_agent:

PAYLOAD

GET/ HTTR/1.1

Host: wwwigoogle.comi

Connection: keep-alive

User-Agent:[Mozilla/5.0] (%11; U; Linux i686; en-US)
AppleWWebkit/534,16 (KHTML, like Gecko) Ubuntu/10.10
Chromiumi10.0.618.0 Chrome/10.0.618.0 Salari/534 16

content:"Mozilla’5.0"; hitp_user_agent;

content:"google.com”; hitp_user_agent; x

Notes

e The http.user_agent buffer will NOT include the header name, colon, or leading whitespace. i.e. it will not
include "User-Agent: ".

e The http.user_agent buffer does not include a CRLF (0xOD 0x0A) at the end. If you want to match the end
of the buffer, use a relative isdataat or a PCRE (although PCRE will be worse on performance).

« If a request contains multiple "User-Agent" headers, the values will be concatenated in the http.user_agent

non

buffer, in the order seen from top to bottom, with a comma and space (", ") between each of them.

Example request:

GET /test.html HTTP/1.1
User-Agent: SuriTester/0.8
User-Agent: GGGG

98 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

http.user_agent buffer contents:

SuriTester/0.8, GGGG

 Corresponding PCRE modifier: V

» Using the http.user_agent buffer is more efficient when it comes to performance than using the http.header
buffer (~10% better).

* https://blog.inliniac.net/2012/07/09/suricata-http_user_agent-vs-http_header/

8.13.11 http.accept

Sticky buffer to match on the HTTP Accept header. Only contains the header value. The \r\n after the header are not
part of the buffer.

Example:

alert http any any -> any any (http.accept; content:"image/gif"; sid:1;)

8.13.12 http.accept_enc

Sticky buffer to match on the HTTP Accept-Encoding header. Only contains the header value. The \r\n after the header
are not part of the buffer.

Example:

alert http any any -> any any (http.accept_enc; content:'gzip"; sid:1;)

8.13.13 http.accept_lang

Sticky buffer to match on the HTTP Accept-Language header. Only contains the header value. The \r\n after the header
are not part of the buffer.

Example:

alert http any any -> any any (http.accept_lang; content:"en-us"; sid:1;)

8.13.14 http.connection

Sticky buffer to match on the HTTP Connection header. Only contains the header value. The \r\n after the header are
not part of the buffer.

Example:

alert http any any -> any any (http.connection; content: 'keep-alive"; sid:1;)

8.13. HTTP Keywords 99

https://blog.inliniac.net/2012/07/09/suricata-http_user_agent-vs-http_header/

Suricata User Guide, Release 7.0.0

8.13.15 http.content_type

Sticky buffer to match on the HTTP Content-Type headers. Only contains the header value. The \r\n after the header
are not part of the buffer.

Use flow:to_server or flow:to_client to force inspection of request or response.

Examples:

alert http any any -> any any (flow:to_server; \
http.content_type; content:"x-www-form-urlencoded"; sid:1;)

alert http any any -> any any (flow:to_client; \
http.content_type; content:'"text/javascript"; sid:2;)

8.13.16 http.content_len

Sticky buffer to match on the HTTP Content-Length headers. Only contains the header value. The \r\n after the header
are not part of the buffer.

Use flow:to_server or flow:to_client to force inspection of request or response.

Examples:

alert http any any -> any any (flow:to_server; \
http.content_len; content:"666"; sid:1;)

alert http any any -> any any (flow:to_client; \
http.content_len; content:"555"; sid:2;)

To do a numeric inspection of the content length, byte_test can be used.

Example, match if C-L is equal to or bigger than 8079:

alert http any any -> any any (flow:to_client; \
http.content_len; byte_test:0,>=,8079,0,string,dec; sid:3;)

8.13.17 http.referer

Sticky buffer to match on the HTTP Referer header. Only contains the header value. The \r\n after the header are not
part of the buffer.

Example:

alert http any any -> any any (http.referer; content:".php"; sid:1;)

100 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

8.13.18 http.start

Inspect the start of a HTTP request or response. This will contain the request/response line plus the request/response
headers. Use flow:to_server or flow:to_client to force inspection of request or response.

Example:

alert http any any -> any any Chttp.start; content:"HTTP/1.1|0d Oa|User-Agent"; sid:1;)

The buffer contains the normalized headers and is terminated by an extra \r\n to indicate the end of the headers.

8.13.19 http.header_names

Inspect a buffer only containing the names of the HTTP headers. Useful for making sure a header is not present or
testing for a certain order of headers.

Buffer starts with a \r\n and ends with an extra \r\n.

Example buffer:

\\r\\nHost\\r\\n\\r\\n

Example rule:

alert http any any -> any any (http.header_names; content:"|0d Oa|Host|0d Oal|"; sid:1;)

Example to make sure only Host is present:

alert http any any -> any any (http.header_names; \
content:"|0d Oa|Host|0d Oa 0d Oal|"; sid:1;)

Example to make sure User-Agent is directly after Host:

alert http any any -> any any (http.header_names; \
content:"|0d Oa|Host|0d 0a|User-Agent|0d Oa|"; sid:1;)

Example to make sure User-Agent is after Host, but not necessarily directly after:

alert http any any -> any any (http.header_names; \
content:"|0d Oa|Host|0d Qal|"; content:"|0a 0d|User-Agent|0d Qal|"; \
distance:-2; sid:1;)

8.13.20 http.request_body

With the http.request_body sticky buffer, it is possible to match specifically and only on the HTTP request body.
The keyword can be used in combination with all previously mentioned content modifiers like distance, offset,
nocase, within, etc.

Example of http.request_body in a HTTP request:

8.13. HTTP Keywords 101

Suricata User Guide, Release 7.0.0

Host: nowhereasdfasdf.com
Connection: Keep-Alive
Cache-Control: no-cache

type=playerStarti&position=tidal

Example of the purpose of http.client_body:

PAYLOAD

POST fHTTPR/1.0

content”playerStarnt& position”; http_client_body;
content:"'no-cache”; hitp_client_body; x

content"playerStart”; depth: 16; hitp_client_body;

content"playerStart”; hitp_client_body;
content"&position”; distance:0; within:9

Note: how much of the request/client body is inspected is controlled in the libhtp configuration section via the
request-body-limit setting.

http.request_body replaces the previous keyword name: "http_client_body. You may continue +to use the
previous name, but it's recommended that rules be converted to use +the new name.

8.13.21 http.stat_code
With the http. stat_code sticky buffer, it is possible to match specifically and only on the HTTP status code buffer.

The keyword can be used in combination with all previously mentioned content modifiers like distance, offset,
nocase, within, etc.

Example of http.stat_code in a HTTP response:

HTTP/1.1 302 Found

Example of the purpose of http.stat_code:

102 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

content:"302"; http_stat_code;

content:"found”; http_stat_code;

N> N

content:"302"; http_stat_code; depth:5;

8.13.22 http.stat_msg

With the http. stat_msg sticky buffer, it is possible to match specifically and only on the HTTP status message buffer.
The keyword can be used in combination with all previously mentioned content modifiers like depth, distance,
offset, nocase and within.

Example of http.stat_msg in a HTTP response:

HTTP/.1 302 Found

Example of the purpose of http.stat_msg:

content."Found”; http_stat_msqg;

4
content:"1.1"; http_stat_msg; x
v

content:"found”; http_stat_msg; nocase;

8.13. HTTP Keywords 103

Suricata User Guide, Release 7.0.0

8.13.23 http.response_line

The http.response_line forces the whole HTTP response line to be inspected.

Example:

alert http any any -> any any (http.response_line; content:"HTTP/1.0 200 OK"; sid:1;)

8.13.24 http.response_body

With the http.response_body sticky buffer, it is possible to match specifically and only on the HTTP response body.
The keyword can be used in combination with all previously mentioned content modifiers like distance, offset,
nocase, within, etc.

Note: how much of the response/server body is inspected is controlled in your libhitp configuration section via the
response-body-limit setting.

Notes

» Using http.response_body is similar to having content matches that come after file.data except that it
doesn't permanently (unless reset) set the detection pointer to the beginning of the server response body. i.e. it
is not a sticky buffer.

* http.response_body will match on gzip decoded data just like file.data does.

* Since http.response_body matches on a server response, it can't be used with the to_server or
from_client flow directives.

¢ Corresponding PCRE modifier: Q
 further notes at the file.data section below.

http.response_body replaces the previous keyword name: "http_server_body. You may continue +to use the
previous name, but it's recommended that rules be converted to use +the new name.

8.13.25 http.server

Sticky buffer to match on the HTTP Server headers. Only contains the header value. The \r\n after the header are not
part of the buffer.

Example:

alert http any any -> any any (flow:to_client; \
http.server; content:"Microsoft-IIS/6.0"; sid:1;)

104 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

8.13.26 http.location

Sticky buffer to match on the HTTP Location headers. Only contains the header value. The \r\n after the header are
not part of the buffer.

Example:

alert http any any -> any any (flow:to_client; \
http.location; content:"http://www.google.com"; sid:1;)

8.13.27 http.host and http.host.raw

With the http.host sticky buffer, it is possible to match specifically and only the normalized hostname. The http.
host.raw inspects the raw hostname.

The keyword can be used in combination with most of the content modifiers like distance, offset, within, etc.

The nocase keyword is not allowed anymore. Keep in mind that you need to specify a lowercase pattern.

8.13.28 http.request_header

Match on the name and value of a HTTP request header (HTTP1 or HTTP2).

For HTTP2, name and value get concatenated by ": ", colon and space. To detect if a http2 header name contains ":',
the keyword http2.header_name can be used.

Examples:

http.request_header; content:"agent: nghttp2";
http.request_header; content:"custom-header: I love::colons";

http.request_header is a 'sticky buffer'.

http.request_header can be used as fast_pattern.

8.13.29 http.response_header

Match on the name and value of a HTTP response header (HTTP1 or HTTP2).

For HTTP2, name and value get concatenated by ": ", colon and space. To detect if a http2 header name contains ":',
the keyword http2.header_name can be used.

Examples:

http.response_header; content:"server: nghttp2";
http.response_header; content:'"custom-header: I love::colons";

http.response_header is a 'sticky buffer'.

http.response_header can be used as fast_pattern.

8.13. HTTP Keywords 105

Suricata User Guide, Release 7.0.0

Notes
* http.host does not contain the port associated with the host (i.e. abc.com:1234). To match on the host and
port or negate a host and port use http.host.raw.

e The http.host and http.host.raw buffers are populated from either the URI (if the full URI is present in the
request like in a proxy request) or the HTTP Host header. If both are present, the URI is used.

e The http.host and http.host.raw buffers will NOT include the header name, colon, or leading whitespace
if populated from the Host header. i.e. they will not include "Host: ".

e The http.host and http.host.raw buffers do not include a CRLF (0xOD 0x0A) at the end. If you want to
match the end of the buffer, use a relative 'isdataat' or a PCRE (although PCRE will be worse on performance).

e The http.host buffer is normalized to be all lower case.
* The content match that http.host applies to must be all lower case or have the nocase flag set.
* http.host.raw matches the unnormalized buffer so matching will be case-sensitive (unless nocase is set).

* If a request contains multiple "Host" headers, the values will be concatenated in the http.host and http.

"non

host.raw buffers, in the order seen from top to bottom, with a comma and space (", ") between each of them.

Example request:

GET /test.html HTTP/1.1
Host: ABC.com

Accept: */*

Host: efg.net

http.host buffer contents:

abc.com, efg.net

http.host.raw buffer contents:

ABC.com, efg.net

 Corresponding PCRE modifier (http_host): W
* Corresponding PCRE modifier (http_raw_host): Z

8.13.30 file.data

With file.data, the HTTP response body is inspected, just like with http.response_body. The file.data key-
word is a sticky buffer. file.data also works for HTTP request body and can be used in other protocols than HTTP1.

Example:

alert http any any -> any any (file.data; content:"abc"; content:'xyz";)

file_data; content: “abc”; pcre: /abc/;

The file.data keyword affects all following content matches, until the pkt_data keyword is encountered or it reaches
the end of the rule. This makes it a useful shortcut for applying many content matches to the HTTP response body,
eliminating the need to modify each content match individually.

106 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

As the body of a HTTP response can be very large, it is inspected in smaller chunks.

How much of the response/server body is inspected is controlled in your libhtp configuration section via the
response-body-limit setting.

If the HTTP body is a flash file compressed with 'deflate’ or '1zma’, it can be decompressed and file.data can match
on the decompress data. Flash decompression must be enabled under 1ibhtp configuration:

Decompress SWF files.

2 types: 'deflate', 'lzma', 'both' will decompress deflate and lzma
compress-depth:

Specifies the maximum amount of data to decompress,

set 0 for unlimited.

decompress-depth:

Specifies the maximum amount of decompressed data to obtain,
set 0 for unlimited.

swf-decompression:

enabled: yes

type: both

compress-depth: 0

decompress-depth: 0

HOH R W R R R R

Notes

« file.data is the preferred notation, however, file_data is still recognized by the engine and works as well.
e If a HTTP body is using gzip or deflate, file.data will match on the decompressed data.

* Negated matching is affected by the chunked inspection. E.g. 'content:!"<html";' could not match on the first
chunk, but would then possibly match on the 2nd. To avoid this, use a depth setting. The depth setting takes
the body size into account. Assuming that the response-body-minimal-inspect-size is bigger than 1k,
‘content:!"<html"; depth:1024;' can only match if the pattern '<html' is absent from the first inspected chunk.

e file.data can also be used with SMTP

Multiple Buffer Matching

file.data supports multiple buffer matching, see Multiple Buffer Matching.

8.14 File Keywords

Suricata comes with several rule keywords to match on various file properties. They depend on properly configured
File Extraction.

8.14. File Keywords 107

Suricata User Guide, Release 7.0.0

8.14.1 filename

Matches on the file name.

Syntax:

filename:<string>;

Example:

filename: "secret";

file.name supports multiple buffer matching, see Multiple Buffer Matching.

8.14.2 fileext

Matches on the extension of a file name.

Syntax:

fileext:<string>;

Example:

fileext:"jpg";

8.14.3 filemagic

Matches on the information libmagic returns about a file.

Syntax:

filemagic:<string>;

Example:

filemagic:"executable for MS Windows";

Note: as libmagic versions differ between installations, the returned information may also slightly change. See also
#437.

file.magic supports multiple buffer matching, see Multiple Buffer Matching.

8.14.4 filestore

Stores files to disk if the signature matched.

Syntax:

filestore:<direction>,<scope>;

direction can be:
* request/to_server: store a file in the request / to_server direction

* response/to_client: store a file in the response / to_client direction

108 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

* both: store both directions
scope can be:
« file: only store the matching file (for filename,fileext,filemagic matches)
¢ tx: store all files from the matching HTTP transaction
* ssn/flow: store all files from the TCP session/flow.

If direction and scope are omitted, the direction will be the same as the rule and the scope will be per file.

8.14.5 filemd5

Match file MD5 against list of MD5 checksums.

Syntax:

filemd5: [!]filename;

The filename is expanded to include the rule dir. In the default case it will become /etc/suricata/rules/filename. Use
the exclamation mark to get a negated match. This allows for white listing.

Examples:

filemd5:md5-blacklist;
filemd5: !md5-whitelist;

File format

The file format is simple. It's a text file with a single md5 per line, at the start of the line, in hex notation. If there is
extra info on the line it is ignored.

Output from mdSsum is fine:

2£8d0355f0032c3e6311c6408d7c2dc2 util-path.c
b9cf5cf347a70e02£fde975fc4el117760 util-pidfile.c
02aaa6c3f4dbae65f5889eeb8£2bbb8d util-pool.c
dd5fclee7£2f96b5f12d1a854007a818 wutil-print.c

Just MD5's are good as well:

2£8d0355f0032c3e6311c6408d7c2dc2
b9cf5cf347a70e02£de975fc4el117760
02aaabc3f4dbae65£5889eeb8£2bbb8d
dd5fclee7£2f96b5f12d1a854007a818

Memory requirements
Each MDS5 uses 16 bytes of memory. 20 Million MDS5's use about 310 MiB of memory.
See also: https://blog.inliniac.net/2012/06/09/suricata-md5-blacklisting/

8.14. File Keywords 109

https://blog.inliniac.net/2012/06/09/suricata-md5-blacklisting/

Suricata User Guide, Release 7.0.0

8.14.6 fileshat

Match file SHA1 against list of SHA1 checksums.

Syntax:

fileshal:[!]filename;

The filename is expanded to include the rule dir. In the default case it will become /etc/suricata/rules/filename. Use
the exclamation mark to get a negated match. This allows for white listing.

Examples:

fileshal:shal-blacklist;
fileshal:!shal-whitelist;

File format
Same as md5 file format.

8.14.7 filesha256

Match file SHA256 against list of SHA256 checksums.

Syntax:

filesha256:[!]filename;

The filename is expanded to include the rule dir. In the default case it will become /etc/suricata/rules/filename. Use
the exclamation mark to get a negated match. This allows for white listing.

Examples:

filesha256:sha256-blacklist;
filesha256: !sha256-whitelist;

File format

Same as md5 file format.

8.14.8 filesize

Match on the size of the file as it is being transferred.

Syntax:

filesize:<value>;

Possible units are KB, MB and GB, without any unit the default is bytes.

Examples:

filesize:100; # exactly 100 bytes

filesize:100<>200; # greater than 100 and smaller than 200
filesize:>100MB; # greater than 100 megabytes
filesize:<100MB; # smaller than 100 megabytes

110 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

Note: For files that are not completely tracked because of packet loss or stream.reassembly.depth being reached on the
"greater than" is checked. This is because Suricata can know a file is bigger than a value (it has seen some of it already),
but it can't know if the final size would have been within a range, an exact value or smaller than a value.

8.15 DNS Keywords

There are some more content modifiers (If you are unfamiliar with content modifiers, please visit the page Payload
Keywords These ones make sure the signature checks a specific part of the network-traffic.

8.15.1 dns.opcode

This keyword matches on the opcode found in the DNS header flags.

Syntax

dns.opcode: [!]<number>

Examples

Match on DNS requests and responses with opcode 4:

dns.opcode:4;

Match on DNS requests where the opcode is NOT 0:

dns.opcode:!0;

8.15.2 dns.query

With dns.query the DNS request queries are inspected. The dns.query keyword works a bit different from the normal
content modifiers. When used in a rule all contents following it are affected by it. Example:

alert dns any any -> any any (msg:"Test dns.query option"; dns.query; content:"google"; nocase; sid:1;)

dns_query; content: "abc";pcre: /abc/;

The dns.query keyword affects all following contents, until pkt_data is used or it reaches the end of the rule.

Note: dns.query is equivalent to the older dns_query.

8.15. DNS Keywords 111

Suricata User Guide, Release 7.0.0

Normalized Buffer

Buffer contains literal domain name

* <length> values (as seen in a raw DNS request) are literal '.' characters

* no leading <length> value

* No terminating NULL (0x00) byte (use a negated relative isdataat to match the end)
Example DNS request for "mail.google.com" (for readability, hex values are encoded between pipes):

DNS query on the wire (snippet):

|04 |mail|06|google|03|com|00|

dns. query buffer:

mail.google.com

Multiple Buffer Matching

dns.query supports multiple buffer matching, see Multiple Buffer Matching.

8.16 SSL/TLS Keywords

Suricata comes with several rule keywords to match on various properties of TLS/SSL handshake. Matches are string
inclusion matches.

8.16.1 tls.cert_subject

Match TLS/SSL certificate Subject field.

Examples:

tls.cert_subject; content:"CN=*.googleusercontent.com"; isdataat:!1l,relative;
tls.cert_subject; content:'"google.com"; nocase; pcre:"/google\.com$/";

tls.cert_subject is a 'sticky buffer".
tls.cert_subject can be used as fast_pattern.

tls.cert_subject supports multiple buffer matching, see Multiple Buffer Matching.

tis.subject

Legacy keyword to match TLS/SSL certificate Subject field.

example:

tls.subject:"CN=*.googleusercontent.com"

Case sensitive, can't use 'nocase', or other modifiers.

Note: tls.cert_subject replaces the following legacy keywords: tls_cert_subject and tls.subject. It's
recommended that rules be converted to use the new one.

112 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

8.16.2 tls.cert_issuer

Match TLS/SSL certificate Issuer field.

Examples:

tls.cert_issuer; content:"WoSign"; nocase; isdataat:!l,relative;
tls.cert_issuer; content:"StartCom"; nocase; pcre:"/StartCom$/";

tls.cert_issuer is a 'sticky buffer'.
tls.cert_issuer can be used as fast_pattern.
tls.issuerdn

Legacy keyword to match TLS/SSL certificate IssuerDN field

example:

tls.issuerdn:!"CN=Google-Internet-Authority"

Case sensitive, can't use 'nocase', or other modifiers.

Note: tls.cert_issuer replaces the following legacy keywords: tls_cert_issuer and tls.issuerdn. It's rec-
ommended that rules be converted to use the new one.

8.16.3 tls.cert_serial

Match on the serial number in a certificate.

Example:

alert tls any any -> any any (msg:"match cert serial"; \
tls.cert_serial; content:"5C:19:B7:B1:32:3B:1C:A1"; sid:200012;)

tls.cert_serial is a 'sticky buffer'.
tls.cert_serial can be used as fast_pattern.

tls.cert_serial replaces the previous keyword name: tls_cert_serial. You may continue to use the previous
name, but it's recommended that rules be converted to use the new name.

8.16.4 tls.cert_fingerprint

Match on the SHA-1 fingerprint of the certificate.

Example:

alert tls any any -> any any (msg:'"match cert fingerprint"; \
tls.cert_fingerprint; \
content:"4a:a3:66:76:82:cb:6b:23:bb:c3:58:47:23:a4:63:a7:78:a4:a1:18"; \
sid:200023;)

tls.cert_fingerprint is a 'sticky buffer'.

tls.cert_fingerprint can be used as fast_pattern.

8.16. SSL/TLS Keywords 113

Suricata User Guide, Release 7.0.0

tls.cert_fingerprint replaces the previous keyword name: tls_cert_fingerprint may continue to use the
previous name, but it's recommended that rules be converted to use the new name.

8.16.5 tls.sni

Match TLS/SSL Server Name Indication field.

Examples:

tls.sni; content:"oisf.net"; nocase; isdataat:!1,relative;
tls.sni; content:"oisf.net"; nocase; pcre:"/oisf.net$/";

tls.sni is a 'sticky buffer'.
tls.sni can be used as fast_pattern.

tls. sni replaces the previous keyword name: tls_sni. You may continue to use the previous name, but it's recom-
mended that rules be converted to use the new name.

8.16.6 tls _cert notbefore

Match on the NotBefore field in a certificate.

Example:

alert tls any any -> any any (msg:'"match cert NotBefore"; \
tls_cert_notbefore:1998-05-01<>2008-05-01; sid:200005;)

8.16.7 tls_cert_notafter

Match on the NotAfter field in a certificate.

Example:

alert tls any any -> any any (msg:'"match cert NotAfter"; \
tls_cert_notafter:>2015; sid:200006;)

8.16.8 tls_cert_expired

Match returns true if certificate is expired. It evaluates the validity date from the certificate.

Usage:

tls_cert_expired;

114 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

8.16.9 tIs_cert_valid

Match returns true if certificate is not expired. It only evaluates the validity date. It does not do cert chain validation.
It is the opposite of tls_cert_expired.

Usage:

tls_cert_valid;

8.16.10 tls.certs

Do a "raw" match on each of the certificates in the TLS certificate chain.

Example:

alert tls any any -> any any (msg:'"match bytes in TLS cert"; tls.certs; \
content:" |06 09 2a 86|"; sid:200070;)

tls.certs is a 'sticky buffer'.
tls.certs can be used as fast_pattern.

tls.certs supports multiple buffer matching, see Multiple Buffer Matching.

8.16.11 tls.version

Match on negotiated TLS/SSL version.
Supported values: "1.0", "1.1", "1.2", "1.3"
It is also possible to match versions using a hex string.

Examples:

tls.version:1.2;
tls.version:0x7f12;

The first example matches TLSv1.2, whilst the last example matches TLSv1.3 draft 16.

8.16.12 ssl_version

Match version of SSL/TLS record.
Supported values "sslv2", "sslv3", "tls1.0", "tls1.1", "tls1.2", "tls1.3"

Example:

alert tls any any -> any any (msg:"match TLSv1.2"; \
ssl_version:tlsl.2; sid:200030;)

It is also possible to match on several versions at the same time.

Example:

alert tls any any -> any any (msg:"match SSLv2 and SSLv3"; \
ssl_version:sslv2,sslv3; sid:200031;)

8.16. SSL/TLS Keywords 115

Suricata User Guide, Release 7.0.0

8.16.13 tis.fingerprint

match TLS/SSL certificate SHA1 fingerprint

example:

tls.fingerprint:!"£3:40:21:48:70:2c:31:bc:b5:aa:22:ad:63:d6:bc:2e:b3:46:e2:5a"

Case sensitive, can't use 'nocase’'.

The tls.fingerprint buffer is lower case so you must use lower case letters for this to match.

8.16.14 tls.store

store TLS/SSL certificate on disk. The location can be specified in the output.tls-store.certs-log-dir parameter of the
yaml configuration file, cf TLS parameters and certificates logging (tls.log)..

8.16.15 ssl_state
The ssl_state keyword matches the state of the SSL connection. The possible states are client_hello,

server_hello, client_keyx, server_keyx and unknown. You can specify several states with | (OR) to check
for any of the specified states.

8.16.16 tls.random

Matches on the 32 bytes of the TLS random field.

Example:

alert tls any any -> any any (msg:"TLS random test"; \
tls.random; content:"|9b ce 7a 5e 57 5d 77 02 07 c2 9d be 24 01 cc f0 5d cd el d2 a5.
—86 9c 4a 3e ee 38 db 55 1la d9 bc|"; sid: 200074;)

tls.random is a sticky buffer.

8.16.17 tls.random_time

Matches on the first 4 bytes of the TLS random field.

Example:

alert tls any any -> any any (msg:"TLS random_time test"; \
tls.random_time; content:"|9b ce 7a 5e|"; sid: 200075;)

tls.random_time is a sticky buffer.

116 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

8.16.18 tls.random_bytes

Matches on the last 28 bytes of the TLS random field.

Example:

alert tls any any -> any any (msg:"TLS random_bytes test"; \
tls.random_bytes; content:" |57 5d 77 02 07 c2 9d be 24 01 cc £0 5d cd el d2 a5 86 9c.
—4a 3e ee 38 db 55 la d9 bc|"; sid: 200076;)

tls.random_bytes is a sticky buffer.

8.17 SSH Keywords

Suricata has several rule keywords to match on different elements of SSH connections.

8.17.1 ssh.proto

Match on the version of the SSH protocol used. ssh.proto is a sticky buffer, and can be used as a fast pattern.
ssh.proto replaces the previous buffer name: ssh_proto. You may continue to use the previous name, but it's
recommended that existing rules be converted to use the new name.

Format:

ssh.proto;

Example:
alert ssh any any -> any any (msg:"match SSH protocol version"; ssh.proto; content:"2.0"; sid:1000010;)

The example above matches on SSH connections with SSH version 2.0.

8.17.2 ssh.software

Match on the software string from the SSH banner. ssh.software is a sticky buffer, and can be used as fast pattern.

ssh.software replaces the previous keyword names: ssh_software & ssh.softwareversion. You may continue
to use the previous name, but it's recommended that rules be converted to use the new name.

Format:

ssh.software;

Example:
alert ssh any any -> any any (msg:"match SSH software string"; ssh.software; content:"openssh"; nocase; sid:1000020;)

The example above matches on SSH connections where the software string contains "openssh".

8.17. SSH Keywords 117

Suricata User Guide, Release 7.0.0

8.17.3 ssh.protoversion

Matches on the version of the SSH protocol used. A value of 2_compat includes SSH version 1.99.

Format:

ssh.protoversion: [0-9](\.[0-9])7|2_compat;

Example:

alert ssh any any -> any any (msg:"SSH v2 compatible"; ssh.protoversion:2_compat; sid:1;)
The example above matches on SSH connections with SSH version 2 or 1.99.

alert ssh any any -> any any (msg:"SSH v1.10"; ssh.protoversion:1.10; sid:1;)

The example above matches on SSH connections with SSH version 1.10 only.

8.17.4 ssh.softwareversion

This keyword has been deprecated. Please use ssh.software instead. Matches on the software string from the SSH
banner.

Example:

alert ssh any any -> any any (msg:"match SSH software string"; ssh.softwareversion:"OpenSSH"; sid:10000040;)

Suricata comes with a Hassh integration (https://github.com/salesforce/hassh). Hassh is used to fingerprint ssh clients
and servers.

Hassh must be enabled in the Suricata config file (set 'app-layer.protocols.ssh.hassh' to 'yes').

8.17.5 ssh.hassh

Match on hassh (md5 of of hassh algorithms of client).

Example:

alert ssh any any -> any any (msg:"match hassh"; \
ssh.hassh; content:"ec7378cla92f5a8dde7e8b7alddf33d1";\
sid:1000010;)

ssh.hassh is a 'sticky buffer'.
ssh.hassh can be used as fast_pattern.
8.17.6 ssh.hassh.string

Match on Hassh string (hassh algorithms of client).

Example:

alert ssh any any -> any any (msg:"match hassh-string"; \
ssh.hassh.string; content: "none,zlib@openssh.com,zlib"; \
sid:1000030;)

ssh.hassh.string is a 'sticky buffer'.

ssh.hassh.string can be used as fast_pattern.

118 Chapter 8. Suricata Rules

https://github.com/salesforce/hassh

Suricata User Guide, Release 7.0.0

8.17.7 ssh.hassh.server

Match on hassh (md5 of hassh algorithms of server).

Example:

alert ssh any any -> any any (msg:"match SSH hash-server"; \
ssh.hassh.server; content:"b12d2871a1189eff20364cf5333619ee"; \
sid:1000020;)

ssh.hassh. server is a 'sticky buffer'.

ssh.hassh.server can be used as fast_pattern.

8.17.8 ssh.hassh.server.string

Match on hassh string (hassh algorithms of server).
Example::

alert ssh any any -> any any (msg:''match SSH hash-server-string'';
ssh.hassh.server.string; content:"umac-64-etm @openssh.com,umac-128-etm @openssh.com";
sid:1000040;)

ssh.hassh. server.string is a 'sticky buffer'.

ssh.hassh.server.string can be used as fast_pattern.

8.18 JA3 Keywords

Suricata comes with a JA3 integration (https://github.com/salesforce/ja3). JA3 is used to fingerprint TLS clients.

JA3 must be enabled in the Suricata config file (set 'app-layer.protocols.tls.ja3-fingerprints' to 'yes').

8.18.1 ja3.hash

Match on JA3 hash (md5).

Example:

alert tls any any -> any any (msg:"match JA3 hash"; \
ja3.hash; content:"e7eca2baf4458d095b7f45da28c16c34"; \
sid:100001;)

ja3.hash is a 'sticky buffer'.
ja3.hash can be used as fast_pattern.

ja3.hash replaces the previous keyword name: ja3_hash. You may continue to use the previous name, but it's
recommended that rules be converted to use the new name.

8.18. JA3 Keywords 119

mailto:umac-64-etm@openssh.com
mailto:128-etm@openssh.com
https://github.com/salesforce/ja3

Suricata User Guide, Release 7.0.0

8.18.2 ja3.string

Match on JA3 string.

Example:

alert tls any any -> any any (msg:"match JA3 string"; \
ja3.string; content:"19-20-21-22"; \
s$id:100002;)

ja3.string is a 'sticky buffer'.
ja3.string can be used as fast_pattern.

ja3.string replaces the previous keyword name: ja3_string. You may continue to use the previous name, but it's
recommended that rules be converted to use the new name.

8.18.3 ja3s.hash

Match on JA3S hash (md5).

Example:

alert tls any any -> any any (msg:"match JA3S hash"; \
ja3s.hash; content:"b26c652e0a402a24b5ca2a660e84£9d5"; \
sid:100003;)

ja3s.hashis a 'sticky buffer'.

ja3s.hash can be used as fast_pattern.

8.18.4 ja3s.string

Match on JA3S string.

Example:

alert tls any any -> any any (msg:'"match on JA3S string"; \
ja3s.string; content:"771,23-35"; sid:100004;)

ja3s.string is a 'sticky buffer'.

ja3s.string can be used as fast_pattern.

8.19 Modbus Keyword

The modbus keyword can be used for matching on various properties of Modbus requests.
There are three ways of using this keyword:
* matching on functions properties with the setting "function";
* matching on directly on data access with the setting "access";
* matching on unit identifier with the setting "unit" only or with the previous setting "function" or "access".

With the setting function, you can match on:

120 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

* an action based on a function code field and a sub-function code when applicable;

* one of three categories of Modbus functions;

* public functions that are publicly defined (setting "public")

¢ user-defined functions (setting "user")

* reserved functions that are dedicated to proprietary extensions of Modbus (keyword "reserved")

¢ one of the two sub-groups of public functions:

— assigned functions whose definition is already given in the Modbus specification (keyword "assigned");

— unassigned functions, which are reserved for future use (keyword "unassigned").

Syntax:

modbus:

function <value>
modbus: function <value>, subfunction <value>
modbus: function [!] <assigned | unassigned | public | user | reserved | all>

Sign '!' is negation

Examples:

modbus: function 21 # Write File record function

modbus: function 4, subfunction 4 # Force Listen Only Mode (Diagnostics) function
modbus: function assigned # defined by Modbus Application Protocol.
—.Specification V1.1b3

modbus: function public # validated by the Modbus.org community

modbus: function user # internal use and not supported by the specification
modbus: function reserved # used by some companies for legacy products and not.
—~available for public use

modbus: function !reserved # every function but reserved function

With the access setting, you can match on:

* atype of data access (read or write);

* one of primary tables access (Discretes Input, Coils, Input Registers and Holding Registers);

 arange of addresses access;

e a written value.

Syntax:

modbus: access <read | write>

modbus: access read <discretes | coils | input | holding>

modbus: access read <discretes | coils | input | holding>, address <value>
modbus: access write < coils | holding>

modbus: access write < coils | holding>, address <value>

modbus: access write < coils | holding>, address <value>, value <value>

With _<value>_ setting matches on the address or value as it is being accessed or written as follows:

address

100

exactly address 100

address 100<>200 # greater than address 100 and smaller than address 200

address
address

>100
<100

greater than address 100
smaller than address 100

8.19. Modbus Keyword 121

Suricata User Guide, Release 7.0.0

Examples:

modbus: access read # Read access

modbus: access write # Write access

modbus: access read input # Read access to Discretes Input.
—table

modbus: access write coils # Write access to Coils table
modbus: access read discretes, address <100 # Read access at address smaller.,

—than 100 of Discretes Input table
modbus: access write holding, address 500, value >200 # Write value greater than 200 at.
—saddress 500 of Holding Registers table

With the setting unit, you can match on:

¢ a MODBUS slave address of a remote device connected on the sub-network behind a bridge or a gateway. The
destination IP address identifies the bridge itself and the bridge uses the MODBUS unit identifier to forward the
request to the right slave device.

Syntax:

modbus: unit <value>

modbus: unit <value>, function <value>

modbus: unit <value>, function <value>, subfunction <value>

modbus: unit <value>, function [!] <assigned | unassigned | public | user | reserved |.
—all>

modbus: unit <value>, access <read | write>

modbus: unit <value>, access read <discretes | coils | input | holding>

modbus: unit <value>, access read <discretes | coils | input | holding>, address <value>
modbus: unit <value>, access write < coils | holding>

modbus: unit <value>, access write < coils | holding>, address <value>

modbus: unit <value>, access write < coils | holding>, address <value>, value <value>

With _<value>_ setting matches on the address or value as it is being accessed or written as follows:

unit 10 # exactly unit identifier 10

unit 10<>20 # greater than unit identifier 10 and smaller than unit identifier 20
unit >10 # greater than unit identifier 10

unit <10 # smaller than unit identifier 10

Examples:

modbus: unit 10 # Unit identifier.
~10

modbus: unit 10, function 21 # Unit identifier.
.10 and write File record function

modbus: unit 10, function 4, subfunction 4 # Unit identifier.
.10 and force Listen Only Mode (Diagnostics) function

modbus: unit 10, function assigned # Unit identifier.,
—10 and assigned function

modbus: unit 10, function !reserved # Unit identifier,
.10 and every function but reserved function

modbus: unit 10, access read # Unit identifier.
10 and Read access

modbus: unit 10, access write coils # Unit identifier.,
10 and Write access to Coils table

(continues on next page)

122 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

(continued from previous page)

modbus: unit >10, access read discretes, address <100 # Greater than.
—unit identifier 10 and Read access at address smaller than 100 of Discretes Input table
modbus: unit 10<>20, access write holding, address 500, value >200 # Greater than.

—unit identifier 10 and smaller than unit identifier 20 and Write value greater than.
200 at address 500 of Holding Registers table

(cf. http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf)

Note: Address of read and write are starting at 1. So if your system is using a start at 0, you need to add 1 the address
values.

Note: According to MODBUS Messaging on TCP/IP Implementation Guide V1.0b, it is recommended to keep the
TCP connection opened with a remote device and not to open and close it for each MODBUS/TCP transaction. In that
case, it is important to set the depth of the stream reassembling as unlimited (stream.reassembly.depth: 0)

Note: According to MODBUS Messaging on TCP/IP Implementation Guide V1.0b, the MODBUS slave device ad-
dresses on serial line are assigned from 1 to 247 (decimal). Address O is used as broadcast address.

(cf. http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf)

Paper and presentation (in french) on Modbus support are available : http://www.ssi.gouv.fr/agence/publication/
detection-dintrusion-dans-les-systemes-industriels-suricata-et-le-cas-modbus/

8.20 DCERPC Keywords

Following keywords can be used for matching on fields in headers and payloads of DCERPC packets over UDP, TCP
and SMB.

8.20.1 dcerpc.iface

Match on the value of the interface UUID in a DCERPC header. If any_frag option is given, the match shall be done
on all fragments. If it's not, the match shall only happen on the first fragment.

The format of the keyword:

dcerpc.iface:<uuid>;

dcerpc.iface:<uuid>, [>,<,!,=]<iface_version>;
dcerpc.iface:<uuid>,any_frag;

dcerpc.iface:<uuid>, [>,<,!,=]<iface_version>,any_frag;
Examples:

dcerpc.iface:367abb81-9844-35f1-ad32-98f038001003;
dcerpc.iface:367abb81-9844-35f1-ad32-98f038001003,!10;
dcerpc.iface:367abb81-9844-35f1-ad32-98f038001003,any_frag;
dcerpc.iface:367abb81-9844-35f1-ad32-98f038001003,>1,any_frag;

ET Open rule example:

alert tcp any any -> $HOME_NET any (msg:"ET NETBIOS DCERPC WMI Remote Process Execution";
flow:to_server,established; dce_iface:00000143-0000-0000-c000-000000000046; classtype:bad-unknown;
sid:2027167; rev:1; metadata:affected_product Windows_XP_Vista_7_8_10_Server_32_64_Bit, attack_target
Client_Endpoint, created_at 2019_04_09, deployment Internal, former_category NETBIOS, signature_severity
Informational, updated_at 2019_04_09;)

8.20. DCERPC Keywords 123

http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf
http://www.ssi.gouv.fr/agence/publication/detection-dintrusion-dans-les-systemes-industriels-suricata-et-le-cas-modbus/
http://www.ssi.gouv.fr/agence/publication/detection-dintrusion-dans-les-systemes-industriels-suricata-et-le-cas-modbus/

Suricata User Guide, Release 7.0.0

8.20.2 dcerpc.opnum

Match on one or many operation numbers and/or operation number range within the interface in a DCERPC header.

The format of the keyword:

dcerpc.opnum:<ul6>;

dcerpc.opnum: [>,<,!,=]<ul6>;
dcerpc.opnum:<ul6>,<ul6>,<ul6>....;
dcerpc.opnum:<ul6>-<ul6>;

Examples:

dcerpc.opnum:15;
dcerpc.opnum:>10;
dcerpc.opnum:12,24,62,61;
dcerpc.opnum:12,18-24,5;
dcerpc.opnum:12-14,12,121,62-78;

8.20.3 dcerpc.stub_data

Match on the stub data in a given DCERPC packet. It is a 'sticky buffer'.

Example:

dcerpc.stub_data; content:"123456";

8.20.4 Additional information

More information on the protocol can be found here:

* DCERPC: https://pubs.opengroup.org/onlinepubs/9629399/chap1.htm

8.21 DHCP keywords

8.21.1 dhcp.leasetime

DHCP lease time (integer).

Syntax:

dhcp.leasetime: [op]<number>

The time can be matched exactly, or compared using the _op_ setting:

dhcp.leasetime:3 # exactly 3
dhcp.leasetime:<3 # smaller than 3
dhcp.leasetime:>=2 # greater or equal than 2

Signature example:

124

Chapter 8

. Suricata Rules

https://pubs.opengroup.org/onlinepubs/9629399/chap1.htm

Suricata User Guide, Release 7.0.0

alert dhcp any any -> any any (msg:'"small DHCP lease time (<3)"; dhcp.leasetime:<3;.
—sid:1; rev:1;)

8.21.2 dhcp.rebinding_time

DHCP rebinding time (integer).

Syntax:

dhcp.rebinding_time: [op]<number>

The time can be matched exactly, or compared using the _op_ setting:

dhcp.rebinding_time:3 # exactly 3
dhcp.rebinding_time:<3 # smaller than 3
dhcp.rebinding_time:>=2 # greater or equal than 2

Signature example:

alert dhcp any any -> any any (msg:"small DHCP rebinding time (<3)"; dhcp.rebinding_time:
<3; sid:1; rev:1;)

8.21.3 dhcp.renewal_time

DHCP renewal time (integer).

Syntax:

dhcp.renewal_time: [op]<number>

The time can be matched exactly, or compared using the _op_ setting:

dhcp.renewal_time:3 # exactly 3
dhcp.renewal _time:<3 # smaller than 3
dhcp.renewal_time:>=2 # greater or equal than 2

Signature example:

alert dhcp any any -> any any (msg:"small DHCP renewal time (<3)"; dhcp.renewal_time:<3;.
—sid:1; rev:1;)

8.22 DNP3 Keywords

The DNP3 keywords can be used to match on fields in decoded DNP3 messages. The keywords are based on Snort's
DNP3 keywords and aim to be 100% compatible.

8.22. DNP3 Keywords 125

Suricata User Guide, Release 7.0.0

8.22.1 dnp3_func

This keyword will match on the application function code found in DNP3 request and responses. It can be specified as
the integer value or the symbolic name of the function code.

Syntax

dnp3_func:<value>;

Where value is one of:
* An integer value between 0 and 255 inclusive.
¢ Function code name:

confirm

— read

— write

— select

— operate

— direct_operate

— direct_operate_nr
— immed_freeze

— immed_freeze nr
— freeze_clear

— freeze clear_nr

— freeze_at_time

— freeze_at_time_nr
— cold_restart

— warm_restart

— initialize_data

— initialize_appl

— start_appl

— stop_appl

— save_config

— enable_unsolicited
— disable_unsolicited
— assign_class

— delay_measure

— record_current_time

— open_file

126 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

close_file
delete_file
get_file_info
authenticate_file
abort_file
activate_config
authenticate_req
authenticate_err

response

unsolicited_response

authenticate_resp

8.22.2 dnp3_ind

This keyword matches on the DNP3 internal indicator flags in the response application header.

Syntax

dnp3_ind:<flag>{,<flag>...}

Where flag is the name of the internal indicator:

all_stations
class_1_events
class_2_events
class_3_events
need_time
local_control
device_trouble

device_restart

no_func_code_support

object_unknown

parameter_error

event_buffer_overflow

already_executing
config_corrupt
reserved_2

reserved_1

This keyword will match of any of the flags listed are set. To match on multiple flags (AND type match), use dnp3_ind

for each flag that must be set.

8.22. DNP3 Keywords

127

Suricata User Guide, Release 7.0.0

Examples

dnp3_ind:all_stations;

dnp3_ind:class_1_events,class_2_events;

8.22.3 dnp3_obj

This keyword matches on the DNP3 application data objects.

Syntax

dnp3_obj:<group>,<variation>

Where <group> and <variation> are integer values between 0 and 255 inclusive.

8.22.4 dnp3_data

This keyword will cause the following content options to match on the re-assembled application buffer. The reassembled
application buffer is a DNP3 fragment with CRCs removed (which occur every 16 bytes), and will be the complete
fragment, possibly reassembled from multiple DNP3 link layer frames.

Syntax

dnp3_data;

Example

dnp3_data; content:"|c3 06]|";

8.23 ENIP/CIP Keywords

The enip_command and cip_service keywords can be used for matching on various properties of ENIP requests.
There are three ways of using this keyword:

* matching on ENIP command with the setting "enip_command";

» matching on CIP Service with the setting "cip_service".

* matching both the ENIP command and the CIP Service with "enip_command" and "cip_service" together
For the ENIP command, we are matching against the command field found in the ENIP encapsulation.

For the CIP Service, we use a maximum of 3 comma separated values representing the Service, Class and Attribute.
These values are described in the CIP specification. CIP Classes are associated with their Service, and CIP Attributes
are associated with their Service. If you only need to match up until the Service, then only provide the Service value.
If you want to match to the CIP Attribute, then you must provide all 3 values.

128 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

Syntax:

enip_command:<value>
cip_service:<value(s)>
enip_command:<value>, cip_service:<value(s)>

Examples:

enip_command: 99

cip_service:75
cip_service:16,246,6
enip_command:111, cip_service:5

(cf. http://read.pudn.com/downloads166/ebook/763211/EIP-CIP-V1-1.0.pdf)

Information on the protocol can be found here: http:/literature.rockwellautomation.com/idc/groups/literature/
documents/wp/enet-wp001_-en-p.pdf

8.24 FTP/FTP-DATA Keywords

8.24.1 ftpdata_command

Filter ftp-data channel based on command used on the FTP command channel. Currently supported commands are
RETR (get on a file) and STOR (put on a file).

Syntax:

ftpdata_command: (retr|stor)

Examples:

ftpdata_command:retr
ftpdata_command: stor

Signature example:

alert ftp-data any any -> any any (msg:"FTP store password"; filestore; filename:
—"password"; ftpdata_command:stor; sid:3; rev:1;)

8.24.2 ftpbounce

Detect FTP bounce attacks.

Syntax:

ftpbounce

8.24. FTP/FTP-DATA Keywords 129

http://read.pudn.com/downloads166/ebook/763211/EIP-CIP-V1-1.0.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/wp/enet-wp001_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/wp/enet-wp001_-en-p.pdf

Suricata User Guide, Release 7.0.0

8.25 Kerberos Keywords

8.25.1 krb5_msg_type
This keyword allows to match the Kerberos messages by its type (integer). It is possible to specify the following values
defined in RFC4120:
* 10 (AS-REQ)
* 11 (AS-REP)
* 12 (TGS-REQ)
* 13 (TGS-REP)
* 30 (ERROR)
Syntax:

krb5_msg_type:<number>

Signature examples:

alert krb5 any any -> any any (msg:"Kerberos 5 AS-REQ message"; krb5_msg_type:10; sid:3;.
~rev:l;)

alert krb5 any any -> any any (msg:"Kerberos 5 AS-REP message"; krb5_msg_type:11; sid:4;.
~rev:l;)

alert krb5 any any -> any any (msg:"Kerberos 5 TGS-REQ message"; krb5_msg_type:12; sid:5;
< rev:l;)

alert krb5 any any -> any any (msg:"Kerberos 5 TGS-REP message"; krb5_msg_type:13; sid:6;
- rev:l;)

alert krb5 any any -> any any (msg:"Kerberos 5 ERROR message"; krb5_msg_type:30; sid:7;.

~rev:l;)

Note: AP-REQ and AP-REP are not currently supported since those messages are embedded in other application
protocols.

8.25.2 krb5_cname

Kerberos client name, provided in the ticket (for AS-REQ and TGS-REQ messages).

If the client name from the Kerberos message is composed of several parts, the name is compared to each part and the
match will succeed if any is identical.

Comparison is case-sensitive.

Syntax:

krb5_cname; content:'name";

Signature example:

alert krb5 any any -> any any (msg:"Kerberos 5 des server name"; krb5_cname; content:'des

~"; sid:4; rev:1;)

130 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

krb5_cname is a 'sticky buffer'.
krb5_cname can be used as fast_pattern.

krb5. cname supports multiple buffer matching, see Multiple Buffer Matching.

8.25.3 krb5 sname

Kerberos server name, provided in the ticket (for AS-REQ and TGS-REQ messages) or in the error message.

If the server name from the Kerberos message is composed of several parts, the name is compared to each part and the
match will succeed if any is identical.

Comparison is case-sensitive.

Syntax:

krb5_sname; content:'"name";

Signature example:

alert krb5 any any -> any any (msg:"Kerberos 5 krbtgt server name"; krb5_sname; content:
~"krbtgt"; sid:5; rev:1;)

krb5_sname is a 'sticky buffer'.
krb5_sname can be used as fast_pattern.

krb5. sname supports multiple buffer matching, see Multiple Buffer Matching.

8.25.4 krb5 err _code

Kerberos error code (integer). This field is matched in Kerberos error messages only.
For a list of error codes, refer to RFC4120 section 7.5.9.

Syntax:

krb5_err_code:<number>

Signature example:

alert krb5 any any -> any any (msg:"Kerberos 5 error C_PRINCIPAL_UNKNOWN"; krb5_err_
—code:6; sid:6; rev:1;)

8.25.5 krb5.weak_encryption (event)

Event raised if the encryption parameters selected by the server are weak or deprecated. For example, using a key size
smaller than 128, or using deprecated ciphers like DES.

Syntax:

app-layer-event:krb5.weak_encryption

Signature example:

8.25. Kerberos Keywords 131

Suricata User Guide, Release 7.0.0

alert krb5 any any -> any any (msg:"SURICATA Kerberos 5 weak encryption parameters";.
—flow:to_client; app-layer-event:krb5.weak_encryption; classtype:protocol-command-
—decode; sid:2226001; rev:1;)

8.25.6 krb5.malformed_data (event)

Event raised in case of a protocol decoding error.

Syntax:

app-layer-event:krb5.mal formed_data

Signature example:

alert krb5 any any -> any any (msg:"SURICATA Kerberos 5 malformed request data"; flow:to_
—sserver; app-layer-event:krb5.malformed_data; classtype:protocol-command-decode;..
—51d:2226000; rev:1;)

8.25.7 krbb.ticket_encryption

Kerberos ticket encryption (enumeration).
For a list of encryption types, refer to RFC3961 section 8.

Syntax:

krb5.ticket_encryption: (!)"weak" or (space or comma)-separated list of integer or.
—string values for an encryption type

Signature example:

alert krb5 any any -> any any (krb5.ticket_encryption: weak; sid:1;)
alert krb5 any any -> any any (krb5.ticket_encryption: 23; sid:2;)
alert krb5 any any -> any any (krb5.ticket_encryption: rc4-hmac,rc4-hmac-exp; sid:3;)

8.26 SMB Keywords

SMB keywords used in both SMB1 and SMB2 protocols.

8.26.1 smb.named_pipe

Match on SMB named pipe in tree connect.

Examples:

smb.named_pipe; content:"IPC"; endswith;
smb.named_pipe; content:"strange'; nocase; pcre:"/really$/";

smb.named_pipe is a 'sticky buffer'.

smb .named_pipe can be used as fast_pattern.

132 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

8.26.2 smb.share

Match on SMB share name in tree connect.

Examples:

smb.share; content:'"shared"; endswith;
smb.share; content:"strange"; nocase; pcre:'"/really$/";

smb. share is a 'sticky buffer'.
smb . share can be used as fast_pattern.

8.26.3 smb.ntimssp_user

Match on SMB ntlmssp user in session setup.

Examples:

smb.ntlmssp_user; content:"doe"; endswith;
smb.ntlmssp_user; content:"doe"; nocase; pcre:"/j(ohn|ane).*doe$/";

smb.ntlmssp_user is a 'sticky buffer'.
smb.ntlmssp_user can be used as fast_pattern.

8.26.4 smb.ntimssp_domain

Match on SMB ntlmssp domain in session setup.

Examples:

smb.ntlmssp_domain; content:"home"; endswith;
smb.ntlmssp_domain; content:"home"; nocase; pcre:"/home(sweet)*$/";

smb.ntlmssp_domain is a 'sticky buffer'.

smb.ntlmssp_domain can be used as fast_pattern.

8.27 SNMP keywords

8.27.1 snmp.version

SNMP protocol version (integer). Expected values are 1, 2 (for version 2c) or 3.

Syntax:

snmp . version: [op] <number>

The version can be matched exactly, or compared using the _op_ setting:

snmp .version: 3 # exactly 3
snmp .version:<3 # smaller than 3
snmp.version:>=2 # greater or equal than 2

8.27. SNMP keywords 133

Suricata User Guide, Release 7.0.0

Signature example:

alert snmp any any -> any any (msg:"old SNMP version (<3)"; snmp.version:<3; sid:1;.
~rev:1;)

8.27.2 snmp.community
SNMP community strings are like passwords for SNMP messages in version 1 and 2c. In version 3, the community
string is likely to be encrypted. This keyword will not match if the value is not accessible.

The default value for the read-only community string is often "public", and "private" for the read-write community
string.

Comparison is case-sensitive.

Syntax:

snmp . community; content:''private";

Signature example:

alert snmp any any -> any any (msg:"SNMP community private"; snmp.community; content:
<"private"; sid:2; rev:1;)

snmp . community is a 'sticky buffer'.

snmp . community can be used as fast_pattern.

8.27.3 snmp.usm

SNMP User-based Security Model (USM) is used in version 3. It corresponds to the user name.
Comparison is case-sensitive.

Syntax:

snmp.usm; content:"admin'";

Signature example:

alert snmp any any -> any any (msg:"SNMP usm admin"; snmp.usm; content:"admin"; sid:2;.
~rev:l;)

snmp . usm is a 'sticky buffer'.

snmp . usm can be used as fast_pattern.

134 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

8.27.4 snmp.pdu_type

SNMP PDU type (integer).
Common values are:
* 0: GetRequest
* 1: GetNextRequest
» 2: Response
: SetRequest
: TrapV1 (obsolete, was the old Trap-PDU in SNMPv1)
: GetBulkRequest

: InformRequest

: TrapV2

.
(e BN | AN W &~ W [\

* 8: Report
This keyword will not match if the value is not accessible within (for ex, an encrypted SNMP v3 message).

Syntax:

snmp . pdu_type: <number>

Signature example:

alert snmp any any -> any any (msg:"SNMP response"; snmp.pdu_type:2; sid:3; rev:1l;)

8.28 Base64 keywords

Suricata supports decoding base64 encoded data from buffers and matching on the decoded data.

This is achieved by using two keywords, base64_decode and base64_data. Both keywords must be used in order to
generate an alert.

8.28.1 base64 decode

Decodes base64 data from a buffer and makes it available for the base64_data function.

Syntax:

base64_decode:bytes <value>, offset <value>, relative;

The bytes option specifies how many bytes Suricata should decode and make available for base64_data. The decoding
will stop at the end of the buffer.

The offset option specifies how many bytes Suricata should skip before decoding. Bytes are skipped relative to the
start of the payload buffer if the relative is not set.

The relative option makes the decoding start relative to the previous content match. Default behavior is to start at
the beginning of the buffer. This option makes offset skip bytes relative to the previous match.

Note: Regarding relative and base64_decode:

8.28. Base64 keywords 135

Suricata User Guide, Release 7.0.0

The content match that you want to decode relative to must be the first match in the stream.

Note: base64_decode follows RFC 4648 by default i.e. encounter with any character that is not found in the base64
alphabet leads to rejection of that character and the rest of the string.

See Redmine Bug 5223: https://redmine.openinfosecfoundation.org/issues/5223 and RFC 4648: https://www.
rfc-editor.org/rfc/rfc4648#section-3.3

8.28.2 base64 data

base64_data is a sticky buffer.

Enables content matching on the data previously decoded by base64_decode.

8.28.3 Example

Here is an example of a rule matching on the base64 encoded string "test" that is found inside the http_uri buffer.

It starts decoding relative to the known string "somestring" with the known offset of 1. This must be the first occurrence
of "somestring" in the buffer.

Example:

Buffer content:
http_uri = "GET /en/somestring&dGVzdAo=¬_base64"

Rule:

alert http any any -> any any (msg:"Example"; http.uri; content:"somestring"; \
base64_decode:bytes 8, offset 1, relative; \
base64_data; content:"test"; sid:10001; rev:1;)

Buffer content:
http_uri = "GET /en/somestring&dGVzdAo=¬_base64"

Rule:

alert http any any -> any any (msg:"Example"; content:"somestring"; http_uri; \
base64_decode:bytes 8, offset 1, relative; \
base64_data; content:"test"; sid:10001; rev:1;)

8.29 SIP Keywords

The SIP keywords are implemented as sticky buffers and can be used to match on fields in SIP messages.

136 Chapter 8. Suricata Rules

https://redmine.openinfosecfoundation.org/issues/5223
https://www.rfc-editor.org/rfc/rfc4648#section-3.3
https://www.rfc-editor.org/rfc/rfc4648#section-3.3

Suricata User Guide, Release 7.0.0

Keyword Direction
sip.method Request
sip.uri Request
sip.request_line Request
sip.stat_code Response
sip.stat_msg Response
sip.response_line | Response
sip.protocol Both

8.29.1 sip.method

This keyword matches on the method found in a SIP request.

Syntax

sip.method; content:<method>;

Examples of methods are:
« INVITE
* BYE
* REGISTER
* CANCEL
*« ACK
OPTIONS

Examples

sip.method; content:"INVITE";

8.29.2 sip.uri

This keyword matches on the uri found in a SIP request.

Syntax

sip.uri; content:<uri>;

Where <uri> is an uri that follows the SIP URI scheme.

8.29. SIP Keywords

137

Suricata User Guide, Release 7.0.0

Examples

sip.uri; content:"sip:sip.url.org";

8.29.3 sip.request_line

This keyword forces the whole SIP request line to be inspected.

Syntax

sip.request_line; content:<request_line>;

Where <request_line> is a partial or full line.

Examples

sip.request_line; content:"REGISTER sip:sip.url.org SIP/2.0"

8.29.4 sip.stat_code

This keyword matches on the status code found in a SIP response.

Syntax

sip.stat_code; content:<stat_code>

Where <status_code> belongs to one of the following groups of codes:
e 1xx - Provisional Responses
¢ 2xx - Successful Responses
* 3xx - Redirection Responses
* 4xx - Client Failure Responses
* 5xx - Server Failure Responses

* 6xx - Global Failure Responses

Examples

sip.stat_code; content:"100";

138

Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

8.29.5 sip.stat_ msg

This keyword matches on the status message found in a SIP response.

Syntax

sip.stat_msg; content:<stat_msg>

Where <stat_msg> is a reason phrase associated to a status code.

Examples

sip.stat_msg; content:"Trying";

8.29.6 sip.response_line

This keyword forces the whole SIP response line to be inspected.

Syntax

sip.response_line; content:<response_line>;

Where <response_line> is a partial or full line.

Examples

sip.response_line; content:"SIP/2.0 100 OK"

8.29.7 sip.protocol

This keyword matches the protocol field from a SIP request or response line.

If the response line is 'SIP/2.0 100 OK', then this buffer will contain 'SIP/2.0'

Syntax

sip.protocol; content:<protocol>

Where <protocol> is the SIP protocol version.

8.29. SIP Keywords 139

Suricata User Guide, Release 7.0.0

Example

sip.protocol; content:"SIP/2.0"

8.30 RFB Keywords

The rfb.name and rfb.sectype keywords can be used for matching on various properties of RFB (Remote Frame-
buffer, i.e. VNC) handshakes.

8.30.1 rfb.name

Match on the value of the RFB desktop name field.

Examples:

rfb.name; content:"Alice's desktop";
rfb.name; pcre:"/.* \(screen [0-9]\)$/";

rfb.name is a 'sticky buffer'.

rfb.name can be used as fast_pattern.

8.30.2 rfb.secresult

Match on the value of the RFB security result, e.g. ok, fail, toomany or unknown.

Examples:

rfb.secresult: ok;
rfb.secresult: unknown;

8.30.3 rfb.sectype
Match on the value of the RFB security type field, e.g. 2 for VNC challenge-response authentication, ® for no authen-
tication, and 30 for Apple's custom Remote Desktop authentication.
This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:
e > (greater than)
¢ < (less than)
e >= (greater than or equal)
e <= (less than or equal)

Examples:

rfb.sectype:2;
rfb.sectype:>=3;

140 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

8.30.4 Additional information

More information on the protocol can be found here: https://tools.ietf.org/html/rfc6143

8.31 MQTT Keywords

Various keywords can be used for matching on fields in fixed and variable headers of MQTT messages as well as
payload values.

8.31.1 mqtt.protocol_version

Match on the value of the MQTT protocol version field in the fixed header.

The format of the keyword:

mgtt.protocol_version:<min>-<max>;
mgtt.protocol_version: [<|>]<number>;
mgtt.protocol_version:<value>;

Examples:

mgqtt.protocol_version:5;

8.31.2 mqtt.type

Match on the MQTT message type (also: control packet type). Valid values are :
e CONNECT
e CONNACK
* PUBLISH
e PUBACK
* PUBREC
* PUBREL
* PUBCOMP
e SUBSCRIBE
¢ SUBACK
¢ UNSUBSCRIBE
* UNSUBACK
* PINGREQ
¢ PINGRESP
¢ DISCONNECT
* AUTH
e UNASSIGNED

8.31. MQTT Keywords 141

https://tools.ietf.org/html/rfc6143

Suricata User Guide, Release 7.0.0

where UNASSIGNED refers to message type code 0.

Examples:

mgtt.type:CONNECT;
mqtt.type:PUBLISH;

8.31.3 mqtt.flags
Match on a combination of MQTT header flags, separated by commas (,). Flags may be prefixed by ! to indicate
negation, i.e. a flag prefixed by ! must not be set to match.
Valid flags are:
* dup (duplicate message)
e retain (message should be retained on the broker)

Examples:

mgtt.flags:dup, !retain;
mqtt.flags:retain;

8.31.4 mqtt.qos

Match on the Quality of Service request code in the MQTT fixed header. Valid values are:
* 0 (fire and forget)
* 1 (at least one delivery)
* 2 (exactly one delivery)

Examples:

mgtt.qos:0;
mgtt.qos:2;

8.31.5 mqtt.reason_code

Match on the numeric value of the reason code that is used in MQTT 5.0 for some message types. Please refer to the
specification for the meaning of these values, which are often specific to the message type in question.

Examples:

match on attempts to unsubscribe from a non-subscribed topic
mgtt.type:UNSUBACK; mqtt.reason_code:17;

match on publications that were accepted but there were no subscribers
mqtt.type:PUBACK; mqtt.reason_code:16;

match on connection attempts by banned clients
mqgtt.CONNACK; mqgtt.reason_code:138;

match on failed connection attempts due to bad credentials

(continues on next page)

142 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

(continued from previous page)

mgtt.CONNACK; mgtt.reason_code:134;

match on connections terminated by server shutdowns
mqgtt.DISCONNECT; mqgtt.reason_code:139;

This keyword is also available under the alias mqtt.connack.return_code for completeness.

8.31.6 mqtt.connack.session_present

Match on the MQTT CONNACK session_present flag. Values can be yes, true, no or false.

Examples:

mqtt.CONNACK; mqgtt.connack.session_present:true;

8.31.7 mqtt.connect.clientid

Match on the self-assigned client ID in the MQTT CONNECT message.

Examples:

mqtt.connect.clientid; pcre:"/*mosq.*/";
mgtt.connect.clientid; content:"myclient";

mqtt.connect.clientid is a 'sticky buffer' and can be used as fast_pattern.

8.31.8 mqtt.connect.flags

Match on a combination of MQTT CONNECT flags, separated by commas (,). Flags may be prefixed by ! to indicate

negation, i.e. a flag prefixed by ! must not be set to match.
Valid flags are:

* username (message contains a username)

* password (message contains a password)

* will (message contains a will definition)

e will_retain (will should be retained on broker)

e clean_session (start with a clean session)

Examples:

mqtt.connect.flags:username,password, !will;
mqtt.connect.flags:username, ! password;
mgtt.connect.flags:clean_session;

8.31. MQTT Keywords

143

Suricata User Guide, Release 7.0.0

8.31.9 mqtt.connect.password

Match on the password credential in the MQTT CONNECT message.

Examples:

mgtt.connect.password; pcre:"/A123[0-9]*/";
mgtt.connect.password; content:"swordfish";

mgtt.connect.password is a 'sticky buffer' and can be used as fast_pattern.

8.31.10 mqtt.connect.username

Match on the username credential in the MQTT CONNECT message.

Examples:

mgtt.connect.username; content:"benson'";

mqtt.connect.username is a 'sticky buffer' and can be used as fast_pattern.

8.31.11 mgqtt.connect.willmessage

Match on the will message in the MQTT CONNECT message, if a will is defined.

Examples:

mgtt.connect.willmessage; pcre:"/Afoobal[rz]/";
mgtt.connect.willmessage; content:"hunter2";

mqtt.connect.willmessage is a 'sticky buffer' and can be used as fast_pattern.

8.31.12 mqtt.connect.willtopic

Match on the will topic in the MQTT CONNECT message, if a will is defined.

Examples:

mgtt.connect.willtopic; pcre:"/Ahunter[0-9]/";

mgtt.connect.willtopic is a 'sticky buffer' and can be used as fast_pattern.

8.31.13 mqtt.publish.message

Match on the payload to be published in the MQTT PUBLISH message.

Examples:

mgtt.type:PUBLISH; mqtt.publish.message; pcre:"/uid=[0-9]+/";
match on published JPEG images
mqtt.type:PUBLISH; mqtt.publish.message; content:"|FF D8 FF EO|"; startswith;

mqtt.publish.message is a 'sticky buffer' and can be used as fast_pattern.

144 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

8.31.14 mqtt.publish.topic

Match on the topic to be published to in the MQTT PUBLISH message.

Examples:

mgtt.publish.topic; content:"mytopic";

mgtt.publish.topic is a 'sticky buffer' and can be used as fast_pattern.

8.31.15 mqtt.subscribe.topic

Match on any of the topics subscribed to in a MQTT SUBSCRIBE message.

Examples:

mqgtt.subscribe.topic; content:"mytopic";

mqtt.subscribe.topic is a 'sticky buffer' and can be used as fast_pattern.

mqtt.subscribe. topic supports multiple buffer matching, see Multiple Buffer Matching.

8.31.16 mgqtt.unsubscribe.topic

Match on any of the topics unsubscribed from in a MQTT UNSUBSCRIBE message.

Examples:

mgtt.unsubscribe.topic; content:"mytopic";

mqtt.unsubscribe.topic is a 'sticky buffer' and can be used as fast_pattern.

mqtt.unsubscribe. topic supports multiple buffer matching, see Multiple Buffer Matching.

8.31.17 Additional information

More information on the protocol can be found here:
e MQTT 3.1: https://public.dhe.ibm.com/software/dw/webservices/ws-mgqtt/mqtt-v3rl.html
e MQTT 3.1.1: https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
e MQTT 5.0: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

8.32 IKE Keywords

The keywords
e ike.init_spi
e ike.resp_spi
» ike.chosen_sa_attribute
e ike.exchtype

¢ jke.vendor

8.32. IKE Keywords

145

https://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

Suricata User Guide, Release 7.0.0

e ike.key_exchange_payload

e ike.key_exchange_payload_length
¢ ike.nonce_payload

e ike.nonce_payload_length

can be used for matching on various properties of IKE connections.

8.32.1 ike.init_spi, ike.resp_spi

Match on an exact value of the Security Parameter Index (SPI) for the Initiator or Responder.

Examples:

ike.init_spi; content:"18fe9b731£f9f8034";
ike.resp_spi; content:"a®0b8ef0902bb8ec";

ike.init_spi and ike.resp_spi are 'sticky buffer".

ike.init_spi and ike.resp_spi can be used as fast_pattern.

8.32.2 ike.chosen_sa_attribute

Match on an attribute value of the chosen Security Association (SA) by the Responder. Supported for IKEv1
are: alg_enc, alg_hash, alg_auth, alg_dh, alg_prf, sa_group_type, sa_life_type, sa_life_duration,
sa_key_length and sa_field_size. IKEv2 supports alg_enc, alg_auth, alg_prf and alg_dh.

If there is more than one chosen SA the event MultipleServerProposal is set. The attributes of the first SA are used
for this keyword.

Examples:

ike.chosen_sa_attribute:alg_hash=2;
ike.chosen_sa_attribute:sa_key_length=128;

8.32.3 ike.exchtype

Match on the value of the Exchange Type.
This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:
e > (greater than)
¢ < (less than)
* >=(greater than or equal)
e <= (less than or equal)
e argl-arg2 (range)

Examples:

ike.exchtype:5;
ike.exchtype:>=2;

146 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

8.32.4 ike.vendor

Match a vendor ID against the list of collected vendor IDs.

Examples:

ike.vendor:4a131c81070358455c5728£20e954521;

ike.vendor supports multiple buffer matching, see Multiple Buffer Matching.

8.32.5 ike.key_exchange_ payload

Match against the public key exchange payload (e.g. Diffie-Hellman) of the server or client.

Examples:

ike.key_exchange_payload; content:"|6d026d5616c45be0®5e5b898411e9|"

ike.key_exchange_payload is a 'sticky buffer'.

ike.key_exchange_payload can be used as fast_pattern.

8.32.6 ike.key_exchange_payload_length

Match against the length of the public key exchange payload (e.g. Diffie-Hellman) of the server or client.
This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:

e > (greater than)

¢ < (less than)

* >=(greater than or equal)

e <= (less than or equal)

e argl-arg2 (range)

Examples:

ike.key_exchange_payload_length:>132

8.32.7 ike.nonce_payload

Match against the nonce of the server or client.

Examples:

ike.nonce_payload; content:"|6d026d5616c45be05e5b898411e9|"

ike.nonce_payload is a 'sticky buffer'.

ike.nonce_payload can be used as fast_pattern.

8.32. IKE Keywords 147

Suricata User Guide, Release 7.0.0

8.32.8 ike.nonce_payload_length

Match against the length of the nonce of the server or client.
This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:
* > (greater than)
¢ < (less than)
* >=(greater than or equal)
e <= (less than or equal)
e argl-arg2 (range)

Examples:

ike.nonce_payload_length:132
ike.nonce_payload_length:>132

8.32.9 Additional information

More information on the protocol and the data contained in it can be found here: https://tools.ietf.org/html/rfc2409

8.33 HTTP2 Keywords

HTTP2 frames are grouped into transactions based on the stream identifier it it is not 0. For frames with stream identifier
0, whose effects are global for the connection, a transaction is created for each frame.

8.33.1 http2.frametype

Match on the frame type present in a transaction.

Examples:

http2. frametype: GOAWAY;

8.33.2 http2.errorcode

Match on the error code in a GOWAY or RST_STREAM frame

Examples:

http2.errorcode: NO_ERROR;
http2.errorcode: INADEQUATE_SECURITY;

148 Chapter 8. Suricata Rules

https://tools.ietf.org/html/rfc2409

Suricata User Guide, Release 7.0.0

8.33.3 http2.priority

Match on the value of the HTTP2 priority field present in a PRIORITY or HEADERS frame.
This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:
* > (greater than)
¢ < (less than)
* x-y (range between values x and y)

Examples:

http2.priority:2;
http2.priority:>100;
http2.priority:32-64;

8.33.4 http2.window

Match on the value of the HTTP2 value field present in a WINDOWUPDATE frame.

This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:
e > (greater than)
¢ < (less than)
* x-y (range between values x and y)

Examples:

http2.window:1;
http2.window:<100000;

8.33.5 http2.size_update
Match on the size of the HTTP2 Dynamic Headers Table. More information on the protocol can be found here: https:
/Itools.ietf.org/html/rfc754 1#section-6.3
This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:
* > (greater than)
¢ < (less than)
* x-y (range between values x and y)

Examples:

http2.size_update:1234;
http2.size_update:>4096;

8.33. HTTP2 Keywords 149

https://tools.ietf.org/html/rfc7541#section-6.3
https://tools.ietf.org/html/rfc7541#section-6.3

Suricata User Guide, Release 7.0.0

8.33.6 http2.settings

Match on the name and value of a HTTP2 setting from a SETTINGS frame.

This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:
* > (greater than)
¢ < (less than)
* x-y (range between values x and y)

Examples:

http2.settings:SETTINGS_ENABLE_PUSH=0;
http2.settings:SETTINGS_HEADER_TABLE_SIZE>4096;

8.33.7 http2.header_name

Match on the name of a HTTP2 header from a HEADER frame (or PUSH_PROMISE or CONTINUATION).

Examples:

http2.header_name; content:"agent";

http2.header_name is a 'sticky buffer'.
http2.header_name can be used as fast_pattern.

http2.header_name supports multiple buffer matching, see Multiple Buffer Matching.

8.33.8 Additional information

More information on the protocol can be found here: https://tools.ietf.org/html/rfc7540

8.34 Quic Keywords

Suricata implements initial support for Quic by parsing the Quic version.
Suricata also derives a CYU hash for earlier versions of Quic.

Quic app-layer parsing must be enabled in the Suricata config file (set 'app-layer.protocols.quic.enabled' to 'yes').

8.34.1 quic.cyu.hash

Match on the CYU hash

Examples:

alert quic any any -> any any (msg:"QUIC CYU HASH"; \
quic.cyu.hash; content:"7b3cebladc974ad360cfa634e8d0a730"; \
sid:1;)

quic.cyu.hash supports multiple buffer matching, see Multiple Buffer Matching.

150 Chapter 8. Suricata Rules

https://tools.ietf.org/html/rfc7540

Suricata User Guide, Release 7.0.0

8.34.2 quic.cyu.string

Match on the CYU string

Examples:

alert quic any any -> any any (msg:"QUIC CYU STRING"; \

quic.cyu.string; content:"46,PAD-SNI-VER-CCS-UAID-TCID-PDMD-SMHL-ICSL-NONP-MIDS-SCLS-
«»CSCT-COPT-IRTT-CFCW-SFCW"; \

sid:23;)

quic.cyu.string supports multiple buffer matching, see Multiple Buffer Matching.

8.34.3 quic.version

Sticky buffer for matching on the Quic header version in long headers.

Examples:

alert quic any any -> any any (msg:"QUIC VERSION"; \
quic.version; content:"Q046"; \
sid:33;)

8.34.4 Additional information

More information on CYU Hash can be found here: https://engineering.salesforce.com/
gquic-protocol-analysis-and-fingerprinting-in-zeek-a4178855d75f

More information on the protocol can be found here: https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-17

8.35 Generic App Layer Keywords

8.35.1 app-layer-protocol

Match on the detected app-layer protocol.

Syntax:

app-layer-protocol: [!]<protocol>;

Examples:

app-layer-protocol:ssh;
app-layer-protocol:!tls;
app-layer-protocol:failed;

A special value 'failed’ can be used for matching on flows in which protocol detection failed. This can happen if Suricata
doesn't know the protocol or when certain 'bail out' conditions happen.

8.35. Generic App Layer Keywords 151

https://engineering.salesforce.com/gquic-protocol-analysis-and-fingerprinting-in-zeek-a4178855d75f
https://engineering.salesforce.com/gquic-protocol-analysis-and-fingerprinting-in-zeek-a4178855d75f
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-17

Suricata User Guide, Release 7.0.0

Bail out conditions

Protocol detection gives up in several cases:
* both sides are inspected and no match was found
* side A detection failed, side B has no traffic at all (e.g. FTP data channel)
¢ side A detection failed, side B has so little data detection is inconclusive

In these last 2 cases the app-layer-event:applayer_proto_detection_skipped is set.

8.35.2 app-layer-event

Match on events generated by the App Layer Parsers and the protocol detection engine.

Syntax:

app-layer-event:<event name>;

Examples:

app-layer-event:applayer_mismatch_protocol_both_directions;
app-layer-event:http.gzip_decompression_failed;

Protocol Detection

applayer_mismatch_protocol_both_directions

The toserver and toclient directions have different protocols. For example a client talking HTTP to a SSH server.

applayer_wrong_direction_first_data
Some protocol implementations in Suricata have a requirement with regards to the first data direction. The HTTP parser

is an example of this.

https://redmine.openinfosecfoundation.org/issues/993

applayer_detect_protocol_only one_direction

Protocol detection only succeeded in one direction. For FTP and SMTP this is expected.

applayer_proto_detection_skipped

Protocol detection was skipped because of Bail out conditions.

152 Chapter 8. Suricata Rules

https://redmine.openinfosecfoundation.org/issues/993

Suricata User Guide, Release 7.0.0

8.36 Xbits Keyword

Set, unset, toggle and check for bits stored per host or ip_pair.

Syntax:

xbits:<set|unset|isset|isnotset|toggle>,<name>,track <ip_src|ip_dst|ip_pair>;

xbits:<set|unset|isset|toggle>,<name>,track <ip_src|ip_dst|ip_pair> \
[,expire <seconds>];

xbits:<set|unset|isset|toggle>,<name>,track <ip_src|ip_dst|ip_pair> \
[,expire <seconds>];

8.36.1 Notes

* No difference between using hostbits and xbits with track ip_<src|dst>

* If you set on a client request and use track ip_dst, if you want to match on the server response, you check it
(isset) with track ip_src.

¢ To not alert, use noalert;
* the toggle option will flip the value of the xbits.
* See also:
— https://blog.inliniac.net/2014/12/21/crossing-the-streams-in-suricata/

— http://www.cipherdyne.org/blog/2013/07/crossing-the-streams-in-ids-signature-languages.html

YAML settings

Bits that are stored per host are stored in the Host table. This means that host table settings affect hostsbits and xbits
per host.

Bits that are stored per IP pair are stored in the IPPair table. This means that ippair table settings, especially memcap,
affect xbits per ip_pair.

Threading

Due to subtle timing issues between threads the order of sets and checks can be slightly unpredictable.

Unix Socket

Hostbits can be added, removed and listed through the unix socket.

Add:

suricatasc -c "add-hostbit <ip> <bit name> <expire in seconds>"
suricatasc -c "add-hostbit 1.2.3.4 blacklist 3600"

If a hostbit is added for an existing hostbit, it's expiry timer is updated.

Remove:

8.36. Xbits Keyword 153

https://blog.inliniac.net/2014/12/21/crossing-the-streams-in-suricata/
http://www.cipherdyne.org/blog/2013/07/crossing-the-streams-in-ids-signature-languages.html

Suricata User Guide, Release 7.0.0

suricatasc -c¢ "remove-hostbit <ip> <bit name>"
suricatasc -c "remove-hostbit 1.2.3.4 blacklist"

List:

suricatasc -c¢ "list-hosthit <ip>"
suricatasc -c "list-hostbit 1.2.3.4"

This results in:

{
"message":
{
"count": 1,
"hostbits":
[{
"expire": 89,
"name": "blacklist"
1]
3,
"return": "OK"
}
Examples

Creating a SSH blacklist

Below is an example of rules incoming to a SSH server.

The first 2 rules match on a SSH software version often used in bots. They drop the traffic and create an 'xbit' 'badssh’

for the source ip. It expires in an hour:

drop ssh any any -> $MYSERVER 22 (msg:"DROP libssh incoming";
flow:to_server,established; ssh.softwareversion:"libssh";
xbits:set, badssh, track ip_src, expire 3600; sid:4000000005;)

drop ssh any any -> $MYSERVER 22 (msg:"DROP PUTTY incoming";
flow:to_server,established; ssh.softwareversion:"PUTTY";
xbits:set, badssh, track ip_src, expire 3600; sid:4000000007;)

Then the following rule simply drops any incoming traffic to that server that is on that 'badssh' list:

drop ssh any any -> $MYSERVER 22 (msg:"DROP BLACKLISTED";
xbits:isset, badssh, track ip_src; sid:4000000006;)

154

Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

8.37 Thresholding Keywords

Thresholding can be configured per rule and also globally, see Global-Thresholds.

Note: mixing rule and global thresholds is not supported in 1.3 and before. See bug #425. For the state of the support
in 1.4 see Global thresholds vs rule thresholds

8.37.1 threshold

The threshold keyword can be used to control the rule's alert frequency. It has 3 modes: threshold, limit and both.

Syntax:

threshold: type <threshold|limit|both>, track <by_src|by_dst|by_rule|by_both>, count <N>,
<, seconds <T>

type "threshold"

This type can be used to set a minimum threshold for a rule before it generates alerts. A threshold setting of N means
on the Nth time the rule matches an alert is generated.

Example:

alert tcp !'$HOME_NET any -> $HOME_NET 25 (msg:"ET POLICY Inbound Frequent Emails -.
—Possible Spambot Inbound"; \

flow:established; content:'"mail from|3a|"; nocase; o
o \
threshold: type threshold, track by_src, count 10, seconds 60; o
o \

reference:url,doc.emergingthreats.net/2002087; classtype:misc-activity; sid:2002087;.
~rev:10;)

This signature only generates an alert if we get 10 inbound emails or more from the same server in a time period of one
minute.

If a signature sets a flowbit, flowint, etc. those actions are still performed for each of the matches.

Rule actions drop (IPS mode) and reject are applied to each packet (not only the one that meets the thresh-
old condition).

type "limit"

This type can be used to make sure you're not getting flooded with alerts. If set to limit N, it alerts at most N times.

Example:

alert http $HOME_NET any -> any $HTTP_PORTS (msg:"ET USER_AGENTS Internet Explorer 6 in.
—use - Significant Security Risk"; \

flow:to_server,established; content:"|®d 0Oa|User-Agent|3a| Mozilla/4.0 (compatible|3b]|.
—MSIE 6.0|3b|"; \

threshold: type limit, track by_src, seconds 180, count 1; o
. \

reference:url,doc.emergingthreats.net/2010706; classtype:policy-violation; sid:2010706;.
—rev:7;)

8.37. Thresholding Keywords 155

Suricata User Guide, Release 7.0.0

In this example at most 1 alert is generated per host within a period of 3 minutes if MSIE 6.0 is detected.
If a signature sets a flowbit, flowint, etc. those actions are still performed for each of the matches.

Rule actions drop (IPS mode) and reject are applied to each packet (not only the one that meets the limit
condition).

type "both"

This type is a combination of the "threshold" and "limit" types. It applies both thresholding and limiting.

Example:

alert tcp $HOME_NET 5060 -> $EXTERNAL_NET any (msg:"ET VOIP Multiple Unauthorized SIP.
—Responses TCP"; \

flow:established, from_server; content:"SIP/2.0 401 Unauthorized"; depth:24; o
. \
threshold: type both, track by_src, count 5, seconds 360; o
o \

reference:url,doc.emergingthreats.net/2003194; classtype:attempted-dos; sid:2003194;.
—rev:6;)

This alert will only generate an alert if within 6 minutes there have been 5 or more "SIP/2.0 401 Unauthorized" re-
sponses, and it will alert only once in that 6 minutes.

If a signature sets a flowbit, flowint, etc. those actions are still performed for each of the matches.

Rule actions drop (IPS mode) and reject are applied to each packet.

8.37.2 detection_filter

The detection_filter keyword can be used to alert on every match after a threshold has been reached. It differs from
the threshold with type threshold in that it generates an alert for each rule match after the initial threshold has been
reached, where the latter will reset it's internal counter and alert again when the threshold has been reached again.

Syntax:

detection_filter: track <by_src|by_dst|by_rule|by_both>, count <N>, seconds <T>

Example:

alert http $EXTERNAL_NET any -> $HOME_NET any \

(msg:"ET WEB_SERVER WebResource.axd access without t (time) parameter - possible.
—ASP padding-oracle exploit"; \

flow:established, to_server; content:"GET"; http_method; content:"WebResource.axd";.
~http_uri; nocase; \

content:!"&t="; http_uri; nocase; content:!"&|3b|t="; http_uri; nocase; .
o \

detection_filter:track by_src,count 15,seconds 2; o
o \

reference:url,netifera.com/research/; reference:url,www.microsoft.com/technet/
—security/advisory/2416728.mspx; \
classtype:web-application-attack; sid:2011807; rev:5;)

Alerts each time after 15 or more matches have occurred within 2 seconds.

If a signature sets a flowbit, flowint, etc. those actions are still performed for each of the matches.

156 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

Rule actions drop (IPS mode) and reject are applied to each packet that generate an alert

8.38 IP Reputation Keyword

IP Reputation can be used in rules through a new rule keyword "iprep".

For more information about IP Reputation see /P Reputation Config and IP Reputation Format.

8.38.1 iprep

The iprep directive matches on the IP reputation information for a host.

iprep:<side to check>,<category>,<operator>,<reputation score>

side to check: <any|src|dst|both>
category: the category short name
operator: <, >, =

reputation score: 1-127

Example:

alert ip $HOME_NET any -> any any (msg:"IPREP internal host talking to CnC server";.
—flow:to_server; iprep:dst,CnC,>,30; sid:1; rev:1;)

This rule will alert when a system in $SHOME_NET acts as a client while communicating with any IP in the CnC
category that has a reputation score set to greater than 30.

IP-only

The "iprep" keyword is compatible to "IP-only" rules. This means that a rule like:

alert ip any any -> any any (msg:"IPREP High Value CnC"; iprep:src,CnC,>,100; sid:1;.
—rev:1;)

will only be checked once per flow-direction.

8.39 IP Addresses Match

Matching on IP addresses can be done via the IP tuple parameters or via the iprep keywords (see /P Reputation Key-
word). Some keywords providing interaction with datasets are also available.

8.38. IP Reputation Keyword 157

Suricata User Guide, Release 7.0.0

8.39.1 ip.src

The ip.src keyword is a sticky buffer to match on source IP address. It matches on the binary representation and is
compatible with datasets of types ip and ipv4.

Example:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"Inbound bad list"; flow:to_server; ip.
—,src; dataset:isset,badips,type ip,load badips.list; sid:1; rev:1;)

8.39.2 ip.dst

The ip.dst keyword is a sticky buffer to match on destination IP address. It matches on the binary representation and is
compatible with the dataset of type ip and ipv4.

Example:

alert tcp $HOME_NET any -> any any (msg:"Outbound bad list"; flow:to_server; ip.dst;.
—.dataset:isset,badips,type ip,load badips.list; sid:1; rev:1;)

8.40 Config Rules

Config rules are rules that when matching, will change the configuration of Suricata for a flow, transaction, packet or
other unit.

Example:

config dns any any -> any any (dns.query; content:"suricata"; config: logging disable,.
—type tx, scope tx; sid:1;)

This example will detect if a DNS query contains the string suricata and if so disable the DNS transaction logging.
This means that eve.json records, but also Lua output, will not be generated/triggered for this DNS transaction.

8.40.1 Keyword

The config rule keyword provides the setting and the scope of the change.

Syntax:

config:<subsys> <action>, type <type>, scope <scope>;

subsys can be set to:

* logging setting affects logging.
type can be set to:

e tx sub type of the subsys. If subsys is set to logging, setting the fype to tx means transaction logging is affected.
scope can be set to:

* tx setting affects the matching transaction.

The action in <subsys> is currently limited to disable.

158 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

8.40.2 Action

Config rules can, but don't have to, use the config rule action. The config rule action won't generate an alert when the
rule matches, but the rule actions will still be applied. It is equivalent to alert ... (noalert; ...).

8.41 Datasets

Using the dataset and datarep keyword it is possible to match on large amounts of data against any sticky buffer.

For example, to match against a DNS black list called dns-b1:

dns.query; dataset:isset,dns-bl;

These keywords are aware of transforms. So to look up a DNS query against a MDS5 black list:

dns.query; to_md5; dataset:isset,dns-bl;

8.41.1 Global config (optional)

Datasets can optionally be defined in the main config. Sets can also be declared from the rule syntax.

Example of sets for tracking unique values:

datasets:
ua-seen:
type: string
state: ua-seen.lst
dns-sha256-seen:
type: sha256
state: dns-sha256-seen.lst

Rules to go with the above:

alert dns any any -> any any (msg:"dns list test"; dns.query; to_sha256; dataset:isset,dns-sha256-seen; sid:123; rev:1;)
alert http any any -> any any (msg: "http user-agent test"; http.user_agent; dataset:set,ua-seen; sid:234; rev:1;)

It is also possible to optionally define global default memcap and hashsize.

Example:

datasets:
defaults:
memcap: 100mb
hashsize: 2048
ua-seen:
type: string
load: ua-seen.lst

or define memcap and hashsize per dataset.

Example:

8.41. Datasets 159

Suricata User Guide, Release 7.0.0

datasets:
ua-seen:
type: string
load: ua-seen.lst
memcap: 10mb
hashsize: 1024

Note: The hashsize should be close to the amount of entries in the dataset to avoid collisions. If it's set too low, this
could result in rather long startup time.

8.41.2 Rule keywords
dataset

Datasets are binary: something is in the set or it's not.

Syntax:

dataset:<cmd>, <name>,<options>;

dataset:<set|isset|isnotset>,<name> \
[, type <string|md5|sha256|ipv4|ip>, save <file name>, load <file name>, state <file.
—name>, memcap <size>, hashsize <size>];

type <type>
the data type: string, mdS, sha256, ipv4, ip

load <file name>
file name for load the data when Suricata starts up

state
sets file name for loading and saving a dataset

save <file name>
advanced option to set the file name for saving the in-memory data when Suricata exits.

memcap <size>
maximum memory limit for the respective dataset

hashsize <size>
allowed size of the hash for the respective dataset

Note: 'load' and 'state' or 'save' and 'state' cannot be mixed.

Example rules could look like:
1. Detect unique User-Agents:

alert http any any -> any any (msg:"LOCAL HTTP new UA"; http.user_agent; dataset:set,http-ua-seen, type string,
state http-ua-seen.csv; sid:8000001; rev:1;)

2. Detect unique TLDs:

160 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

alert dns SHOME_NET any -> any any (msg:"LOCAL DNS unique TLD"; dns.query; pcrexform:"\.(["\.]+)$";
dataset:set,dns-tld-seen, type string, state dns-tld-seen.csv; sid:8000002; rev:1;)

Following image is a pictorial representation of how the pcrexform works on domain names to find TLDs in the
dataset dns-tld-seen:

‘ ‘ “\([M\]+)$" Match
WWW.Xz-2-vc.net.cn > |::> cn

‘ dns.query ‘

dns-tld-seen

Notice how it is not possible to do certain operations alone with datasets (example 2 above), but, it is possible to use a
combination of other rule keywords. Keep in mind the cost of additional keywords though e.g. in the second example
rule above, negative performance impact can be expected due to pcrexform.

datarep

Data Reputation allows matching data against a reputation list.

Syntax:

datarep:<name>,<operator>,<value>, \
[, load <file name>, type <string|md5|sha256|ipv4|ip>, memcap <size>, hashsize <size>

-1;

Example rules could look like:

alert dns any any -> any any (dns.query; to_md5; datarep:dns_md5, >, 200, load dns_md5.
—rep, type md5, memcap 100mb, hashsize 2048; sid:1;)

alert dns any any -> any any (dns.query; to_sha256; datarep:dns_sha256, >, 200, load dns_
—»sha256.rep, type sha256; sid:2;)

alert dns any any -> any any (dns.query; datarep:dns_string, >, 200, load dns_string.rep,
< type string; sid:3;)

In these examples the DNS query string is checked against three different reputation lists. A MDS5 list, a SHA256 list,

and a raw string (buffer) list. The rules will only match if the data is in the list and the reputation value is higher than
200.

8.41.3 Rule Reloads

Sets that are defined in the yaml, or sets that only use state or save, are considered dynamic sets. These are not reloaded
during rule reloads.

Sets that are defined in rules using only load are considered static tests. These are not expected to change during
runtime. During rule reloads these are reloaded from disk. This reload is effective when the complete rule reload
process is complete.

8.41. Datasets 161

Suricata User Guide, Release 7.0.0

8.41.4 Unix Socket
dataset-add

Unix Socket command to add data to a set. On success, the addition becomes active instantly.

Syntax:

dataset-add <set name> <set type> <data>

set name
Name of an already defined dataset

type
Data type: string, md5, sha256, ipv4, ip

data
Data to add in serialized form (base64 for string, hex notation for md5/sha256, string representation for ipv4/ip)

Example adding 'google.com'’ to set 'myset":

dataset-add myset string Z29vZ2x1LmNvbQ==

dataset-remove

Unix Socket command to remove data from a set. On success, the removal becomes active instantly.

Syntax:

dataset-remove <set name> <set type> <data>

set name
Name of an already defined dataset

type
Data type: string, md5, sha256, ipv4, ip

data
Data to remove in serialized form (base64 for string, hex notation for md5/sha256, string representation for
ipv4/ip)

dataset-clear

Unix Socket command to remove all data from a set. On success, the removal becomes active instantly.

Syntax:

dataset-clear <set name> <set type>

set name
Name of an already defined dataset

type
Data type: string, md5, sha256, ipv4, ip

162 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

dataset-lookup

Unix Socket command to test if data is in a set.

Syntax:

dataset-lookup <set name> <set type> <data>

set name
Name of an already defined dataset

type
Data type: string, md5, sha256, ipv4, ip

data
Data to test in serialized form (base64 for string, hex notation for md5/sha256, string notation for ipv4/ip)

Example testing if 'google.com' is in the set 'myset':

dataset-lookup myset string Z29vZ2xlLmNvbQ==

dataset-dump

Unix socket command to trigger a dump of datasets to disk.

Syntax:

dataset-dump

8.41.5 File formats

Datasets use a simple CSV format where data is per line in the file.

data types

string
in the file as base64 encoded string

mdS
in the file as hex encoded string

sha256
in the file as hex encoded string

ipvd
in the file as string

ip
in the file as string, it can be IPv6 or IPv4 address (standard notation or IPv4 in IPv6 one)

8.41. Datasets 163

Suricata User Guide, Release 7.0.0

dataset

Datasets have a simple structure, where there is one piece of data per line in the file.

Syntax:

<data>

e.g. for ua-seen with type string:

TW96aWxsYS8OL jAgKGNvbXBhdGlibGU7ICk=

which when piped to base64 -d reveals its value:

Mozilla/4.0 (compatible;)

datarep

The datarep format follows the dataset, expect that there are 1 more CSV field:

Syntax:

<data>,<value>

8.41.6 File Locations

Dataset filenames configured in the suricata.yaml can exist anywhere on your filesytem.
When a dataset filename is specified in rule, the following rules are applied:

¢ For load, the filename is opened relative to the rule file containing the rule. Absolute filenames and parent
directory traversals are allowed.

* For save and state the filename is relative to $LOCALSTATEDIR/suricata/data. On many installs this will
be /var/lib/suricata/data, butrun suricata --build-info and check the value of --localstatedir
to verify this location onn your installation.

— Absolute filenames, or filenames containing parent directory traversal (. .) are not allowed unless the con-
figuration paramater datasets.allow-absolute-filenames is set to true.

8.41.7 Security

As datasets potentially allow a rule distributor write access to your system with save and state dataset rules, the
locations allowed are strict by default, however there are two dataset options to tune the security of rules utilizing
dataset filenames:

datasets:
rules:
Set to true to allow absolute filenames and filenames that use
".." components to reference parent directories in rules that specify

their filenames.
allow-absolute-filenames: false

Allow datasets in rules write access for '"save" and

(continues on next page)

164 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

(continued from previous page)

"state". This is enabled by default, however write access is
limited to the data directory.
allow-write: true

By setting datasets.rules.allow-write to false, all save and state rules will fail to load. This option is enabled
by default to preserve compatiblity with previous 6.0 Suricata releases, however may change in a future major release.

Pre-Suricata 6.0.13 behavior can be restored by setting datasets.rules.allow-absolute-filenames to true,
however allowing so will allow any rule to overwrite any file on your system that Suricata has write access to.

8.42 Lua Scripting for Detection

Note: Lua is disabled by default for use in rules, it must be enabled in the configuration file. See the security.lua
section of suricata.yaml and enable allow-rules.

Syntax:

lua:[!]<scriptfilename>;

The script filename will be appended to your default rules location.

The script has 2 parts, an init function and a match function. First, the init.

8.42.1 Init function

function init (args)
local needs = {}
needs["http.request_line"] = tostring(true)
return needs

end

The init function registers the buffer(s) that need inspection. Currently the following are available:
* packet -- entire packet, including headers
* payload -- packet payload (not stream)

* buffer -- the current sticky buffer
* stream

e dnp3

* dns.request

* dns.response

* dns.rrname

* ssh

e smtp

o tls

* http.uri

8.42. Lua Scripting for Detection 165

Suricata User Guide, Release 7.0.0

* http.uri.raw

* http.request_line

* http.request_headers

* http.request_headers.raw
* http.request_cookie

* http.request_user_agent
* http.request_body

* http.response_headers

* http.response_headers.raw
* http.response_body

* http.response_cookie

All the HTTP buffers have a limitation: only one can be inspected by a script at a time.

8.42.2 Match function

function match(args)
a = tostring(args["http.request_line"])
if #a > 0 then
if a:find("APOST%s+/.*%.php%s+HTTP/1.0$") then
return 1
end
end

return 0
end

The script can return 1 or 0. It should return 1 if the condition(s) it checks for match, O if not.

Entire script:

function init (args)
local needs = {}
needs["http.request_line"] = tostring(true)
return needs

end

function match(args)
a = tostring(args["http.request_line"])
if #a > 0 then
if a:find("APOST%s+/.*%.php%s+HTTP/1.0$") then
return 1
end
end

return 0
end

return 0

166 Chapter 8

. Suricata Rules

Suricata User Guide, Release 7.0.0

A comprehensive list of existing lua functions - with examples - can be found at Lua functions (some of them, however,
work only for the lua-output functionality).

8.43 Differences From Snort

This document is intended to highlight the major differences between Suricata and Snort that apply to rules and rule
writing.

Where not specified, the statements below apply to Suricata. In general, references to Snort refer to the version 2.9
branch.

8.43.1 Automatic Protocol Detection

* Suricata does automatic protocol detection of the following application layer protocols:

dcerpc

— dnp3

— dns

— http

— imap (detection only by default; no parsing)

- ftp

— modbus (disabled by default; minimalist probe parser; can lead to false positives)
— smb

— smb2 (disabled internally inside the engine)

— smtp

— ssh

— tls (SSLv2, SSLv3, TLSv1, TLSv1.1 and TLSv1.2)

* In Suricata, protocol detection is port agnostic (in most cases). In Snort, in order for the http_inspect and
other preprocessors to be applied to traffic, it has to be over a configured port.

— Some configurations for app-layer in the Suricata yaml can/do by default specify specific destination ports
(e.g. DNS)

— You can look on 'any' port without worrying about the performance impact that you would have to
be concerned about with Snort.

* If the traffic is detected as HTTP by Suricata, the http_* buffers are populated and can be used, regardless of
port(s) specified in the rule.

* You don't have to check for the http protocol (i.e. alert http ...) to use the http_* buffers although it is
recommended.

* If you are trying to detect legitimate (supported) application layer protocol traffic and don't want to look on
specific port(s), the rule should be written as alert <protocol> ... with any in place of the usual protocol
port(s). For example, when you want to detect HTTP traffic and don't want to limit detection to a particular port
or list of ports, the rules should be written as alert http ... with any in place of $HTTP_PORTS.

— You can also use app-layer-protocol :<protocol>; inside the rule instead.

So, instead of this Snort rule:

8.43. Differences From Snort 167

Suricata User Guide, Release 7.0.0

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS ...

Do this for Suricata:

alert http $HOME_NET -> $EXTERNAL_NET any ...

Or:

alert tcp $HOME_NET any -> $EXTERNAL_NET any (app-layer-protocol:http;

8.43.2 urilen Keyword

* Ranges given in the urilen keyword are inclusive for Snort but not inclusive for Suricata.
Example: urilen:2<>10
— Snort interprets this as, "the URI length must be greater than or equal to 2, and less than or equal to 10".
— Suricata interprets this as "the URI length must be greater than 2 and less than 10".

— There is a request to have Suricata behave like Snort in future versions — https://redmine.
openinfosecfoundation.org/issues/1416

% Currently on hold
* By default, with Suricata, urilen applies to the normalized buffer
— Use , raw for raw buffer
— e.g.urilen:>20,raw;
By default, with Snort, urilen applies to the raw buffer
— Use ,norm for normalized buffer

— e.g. urilen:>20,norm;

8.43.3 http_uri Buffer

¢ In Snort, the http_uri buffer normalizes '+' characters (0x2B) to spaces (0x20).

— Suricata can do this as well but you have to explicitly set query-plusspace-decode: yesinthe libhtp
section of Suricata's yaml file.

* https://redmine.openinfosecfoundation.org/issues/ 1035

* https://github.com/inliniac/suricata/pull/620

8.43.4 http_header Buffer

¢ In Snort, the http_header buffer includes the CRLF CRLF (0x0D 0x0A 0x0D 0x0A) that separates the end of
the last HTTP header from the beginning of the HTTP body. Suricata includes a CRLF after the last header in
the http_header buffer but not an extra one like Snort does. If you want to match the end of the buffer, use
either the http_raw_header buffer, a relative isdataat (e.g. isdataat:!1,relative) or a PCRE (although
PCRE will be worse on performance).

¢ Suricata will include CRLF CRLF at the end of the http_raw_header buffer like Snort does.

168 Chapter 8. Suricata Rules

https://redmine.openinfosecfoundation.org/issues/1416
https://redmine.openinfosecfoundation.org/issues/1416
https://redmine.openinfosecfoundation.org/issues/1035
https://github.com/inliniac/suricata/pull/620

Suricata User Guide, Release 7.0.0

 Snort will include a leading CRLF in the http_header buffer of server responses (but not client requests).
Suricata does not have the leading CRLF in the http_header buffer of the server response or client request.

* In the http_header buffer, Suricata will normalize HTTP header lines such that there is a single space (0x20)
after the colon (:") that separates the header name from the header value; this single space replaces zero or more
whitespace characters (including tabs) that may be present in the raw HTTP header line immediately after the
colon. If the extra whitespace (or lack thereof) is important for matching, use the http_raw_header buffer
instead of the http_header buffer.

* Snort will also normalize superfluous whitespace between the header name and header value like Suricata does
but only if there is at least one space character (0x20 only so not 0x90) immediately after the colon. This means
that, unlike Suricata, if there is no space (or if there is a tab) immediately after the colon before the header value,
the content of the header line will remain unchanged in the http_header buffer.

* When there are duplicate HTTP headers (referring to the header name only, not the value), the normalized buffer
(http_header) will concatenate the values in the order seen (from top to bottom), with a comma and space (",
") between each of them. If this hinders detection, use the http_raw_header buffer instead.

Example request:

GET /test.html HTTP/1.1
Content-Length: 44
Accept: */*
Content-Length: 55

The Content-Length header line becomes this in the http_header buffer:

Content-Length: 44, 55

¢ The HTTP 'Cookie' and 'Set-Cookie' headers are NOT included in the http_header buffer; instead they are
extracted and put into their own buffer — http_cookie. See the http_cookie Buffer section.

e The HTTP 'Cookie' and 'Set-Cookie' headers ARE included in the http_raw_header buffer so if you are trying
to match on something like particular header ordering involving (or not involving) the HTTP Cookie headers,
use the http_raw_header buffer.

* If 'enable_cookie' is set for Snort, the HTTP Cookie header names and trailing CRLF (i.e. "Cookie: \r\n" and
"Set-Cooke \r\n") are kept in the http_header buffer. This is not the case for Suricata which removes the entire
"Cookie" or "Set-Cookie" line from the http_header buffer.

e Other HTTP headers that have their own buffer (http_user_agent, http_host) are not removed from the
http_header buffer like the Cookie headers are.

* When inspecting server responses and file_data is used, content matches in http_* buffers should come
before file_data unless you use pkt_data to reset the cursor before matching in http_* buffers. Snort will
not complain if you use http_* buffers after file_data is set.

8.43.5 http_cookie Buffer
* The http_cookie buffer will NOT include the header name, colon, or leading whitespace. i.e. it will not include
"Cookie: " or "Set-Cookie: ".

e The http_cookie buffer does not include a CRLF (0xOD 0x0A) at the end. If you want to match the end of the
buffer, use a relative isdataat or a PCRE (although PCRE will be worse on performance).

¢ There is no http_raw_cookie buffer in Suricata. Use http_raw_header instead.

8.43. Differences From Snort 169

Suricata User Guide, Release 7.0.0

* You do not have to configure anything special to use the 'http_cookie' buffer in Suricata. This is different from
Snort where you have to set enable_cookie in the http_inspect_server preprocessor config in order to
have the http_cookie buffer treated separate from the http_header buffer.

« If Snort has 'enable_cookie' set and multiple "Cookie" or "Set-Cookie" headers are seen, it will concatenate them
together (with no separator between them) in the order seen from top to bottom.

* If a request contains multiple "Cookie" or "Set-Cookie" headers, the values will be concatenated in the Suricata

"non

http_cookie buffer, in the order seen from top to bottom, with a comma and space (", ") between each of them.

Example request:

GET /test.html HTTP/1.1
Cookie: monster

Accept: */*

Cookie: elmo

Suricata http_cookie buffer contents:

monster, elmo

Snort http_cookie buffer contents:

monsterelmo

* Corresponding PCRE modifier: C (same as Snort)

8.43.6 New HTTP keywords

Suricata supports several HTTP keywords that Snort doesn't have.
Examples are http_user_agent, http_host and http_content_type.
See HTTP Keywords for all HTTP keywords.

8.43.7 byte_extract Keyword
* Suricata supports byte_extract from http_* buffers, including http_header which does not always work
as expected in Snort.

¢ In Suricata, variables extracted using byte_extract must be used in the same buffer, otherwise they will have
the value "0" (zero). Snort does allow cross-buffer byte extraction and usage.

* Be sure to always positively and negatively test Suricata rules that use byte_extract and byte_test to verify
that they work as expected.

170 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

8.43.8 byte_jump Keyword

* Suricata allows a variable name from byte_extract or byte_math to be specified for the nbytes value. The
value of nbytes must adhere to the same constraints as if it were supplied directly in the rule.

8.43.9 byte_math Keyword

* Suricata accepts dce as an endian value or as a separate keyword. endian dce or dce are equivalent.

 Suricata's rule parser rejects rules that repeat keywords in a single rule. E.g., byte_math: endian big,
endian little.

e Suricata's rule parser accepts rvalue values of 0 to the maximum uint32 value. Snort rejects rvalue values of
® and requires values to be between [1..max-uint32 value].

* Suricata will never match if there's a zero divisor. Division by 0 is undefined.

8.43.10 byte_test Keyword
e Suricata allows a variable name from byte_extract or byte_math to be specified for the nbytes value. The
value of nbytes must adhere to the same constraints as though a value was directly supplied by the rule.

* Suricata allows a variable name from byte_extract to be specified for the nbytes value. The value of nbytes
must adhere to the same constraints as if it were supplied directly in the rule.

8.43.11 isdataat Keyword

* The rawbytes keyword is supported in the Suricata syntax but doesn't actually do anything.

* Absolute isdataat checks will succeed if the offset used is less than the size of the inspection buffer. This is
true for Suricata and Snort.

e For relative isdataat checks, there is a 1 byte difference in the way Snort and Suricata do the comparisons.

— Suricata will succeed if the relative offset is less than or equal to the size of the inspection buffer. This is
different from absolute isdataat checks.

— Snort will succeed if the relative offset is less than the size of the inspection buffer, just like absolute
isdataat checks.

— Example - to check that there is no data in the inspection buffer after the last content match:
% Snort: isdataat:!0,relative;
% Suricata: isdataat:!1,relative;

» With Snort, the "inspection buffer" used when checking an isdataat keyword is generally the packet/segment
with some exceptions:

— With PAF enabled the PDU is examined instead of the packet/segment. When file_data or base64_data
has been set, it is those buffers (unless rawbytes is set).

— With some preprocessors - modbus, gtp, sip, dce2, and dnp3 - the buffer can be particular portions of those
protocols (unless rawbytes is set).

— With some preprocessors - rpc_decode, ftp_telnet, smtp, and dnp3 - the buffer can be particular decoded
portions of those protocols (unless rawbytes is set).

8.43. Differences From Snort 171

Suricata User Guide, Release 7.0.0

* With Suricata, the "inspection buffer" used when checking an absolute isdataat keyword is the packet/segment
if looking at a packet (e.g. alert tcp-pkt...) or the reassembled stream segments.

* In Suricata, a relative isdataat keyword will apply to the buffer of the previous content match. So if the
previous content match is a http_* buffer, the relative isdataat applies to that buffer, starting from the end of
the previous content match in that buffer. Snort does not behave like this!

* For example, this Suricata rule looks for the string ".exe" at the end of the URI; to do the same thing in the
normalized URI buffer in Snort you would have to use a PCRE — pcre:"/\x2Eexe$/U";

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:".EXE File Download Request";.
—.flow:established, to_server; content:"GET"; http_method; content:".exe"; http_uri;.
—isdataat:!1,relative; priority:3; sid:18332111;)

* If you are unclear about behavior in a particular instance, you are encouraged to positively and negatively test
your rules that use an isdataat keyword.

8.43.12 Relative PCRE

* You can do relative PCRE matches in normalized/special buffers with Suricata. Example:

content:".php?sign="; http_uri; pcre:"/A[a-zA-Z0-9] $/UR";

* With Snort you can't combine the "relative" PCRE option ('R') with other buffer options like normalized URI
('U") — you get a syntax error.

8.43.13 tls* Keywords

In addition to TLS protocol identification, Suricata supports the storing of certificates to disk, verifying the validity
dates on certificates, matching against the calculated SHA fingerprint of certificates, and matching on certain TLS/SSL
certificate fields including the following:

* Negotiated TLS/SSL version.
* Certificate Subject field.
¢ Certificate Issuer field.
* Certificate SNI Field
For details see SSL/TLS Keywords.

8.43.14 dns_query Keyword

* Sets the detection pointer to the DNS query.

* Works like file_data does ("sticky buffer") but for a DNS request query.

» Use pkt_data to reset the detection pointer to the beginning of the packet payload.
* See DNS Keywords for details.

172 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

8.43.15 IP Reputation and iprep Keyword
* Snort has the "reputation" preprocessor that can be used to define whitelist and blacklist files of IPs which are
used generate GID 136 alerts as well as block/drop/pass traffic from listed IPs depending on how it is configured.
* Suricata also has the concept of files with IPs in them but provides the ability to assign them:
— Categories
— Reputation score
* Suricata rules can leverage these IP lists with the iprep keyword that can be configured to match on:
— Direction
— Category
— Value (reputation score)
* Reputation
e [P Reputation Config
¢ [P Reputation Keyword
¢ [P Reputation Format

* https://blog.inliniac.net/2012/11/21/ip-reputation-in-suricata/

8.43.16 Flowbits

 Suricata fully supports the setting and checking of flowbits (including the same flowbit) on the same
packet/stream. Snort does not always allow for this.

¢ In Suricata, flowbits:isset is checked after the fast pattern match but before other content matches. In
Snort, flowbits:isset is checked in the order it appears in the rule, from left to right.

* If there is a chain of flowbits where multiple rules set flowbits and they are dependent on each other, then the
order of the rules or the sid values can make a difference in the rules being evaluated in the proper order and
generating alerts as expected. See bug 1399 - https://redmine.openinfosecfoundation.org/issues/1399.

e Flow Keywords

8.43.17 flowbits:noalert;

A common pattern in existing rules is to use flowbits:noalert; to make sure a rule doesn't generate an alert if it
matches.

Suricata allows using just noalert; as well. Both have an identical meaning in Suricata.

8.43. Differences From Snort 173

https://blog.inliniac.net/2012/11/21/ip-reputation-in-suricata/
https://redmine.openinfosecfoundation.org/issues/1399

Suricata User Guide, Release 7.0.0

8.43.18 Negated Content Match Special Case

8.4

* For Snort, a negated content match where the starting point for searching is at or beyond the end of the inspection
buffer will never return true.

— For negated matches, you want it to return true if the content is not found.

— This is believed to be a Snort bug rather than an engine difference but it was reported to Sourcefire and
acknowledged many years ago indicating that perhaps it is by design.

— This is not the case for Suricata which behaves as expected.

Example HTTP request:

POST /test.php HTTP/1.1
Content-Length: 9

user=suri

This rule snippet will never return true in Snort but will in Suricata:

content: !"snort"; offset:10; http_client_body;

3.19 File Extraction

* Suricata has the ability to match on files from FTP, HTTP and SMTP streams and log them to disk.

 Snort has the "file" preprocessor that can do something similar but it is experimental, development of it has been
stagnant for years, and it is not something that should be used in a production environment.

* Files can be matched on using a number of keywords including:

— filename

— fileext

- filemagic
— filesize

— filemd5

— fileshal

— filesha256
— filesize

— See File Keywords for a full list.

* The filestore keyword tells Suricata to save the file to disk.

 Extracted files are logged to disk with meta data that includes things like timestamp, src/dst IP, protocol, src/dst

port, HTTP URI, HTTP Host, HTTP Referer, filename, file magic, mdSsum, size, etc.

e There are a number of configuration options and considerations (such as stream reassembly depth and libhtp

body-limit) that should be understood if you want fully utilize file extraction in Suricata.

* File Keywords
e File Extraction

* https://blog.inliniac.net/2011/11/29/file-extraction-in-suricata/

174

Chapter 8. Suricata Rules

https://blog.inliniac.net/2011/11/29/file-extraction-in-suricata/

Suricata User Guide, Release 7.0.0

* https://blog.inliniac.net/2014/11/11/smtp-file-extraction-in-suricata/

8.43.20 Lua Scripting

* Suricata has the lua (or luajit) keyword which allows for a rule to reference a Lua script that can access the
packet, payload, HTTP buffers, etc.

 Provides powerful flexibility and capabilities that Snort does not have.

* More details in: Lua Scripting for Detection

8.43.21 Fast Pattern

» Snort's fast pattern matcher is always case insensitive; Suricata's is case sensitive unless 'nocase' is set on the
content match used by the fast pattern matcher.

e Snort will truncate fast pattern matches based on the max-pattern-len config (default no limit) unless
fast_pattern:only is used in the rule. Suricata does not do any automatic fast pattern truncation cannot
be configured to do so.

* Just like in Snort, in Suricata you can specify a substring of the content string to be use as the fast pattern match.
e.g. fast_pattern:5,20;

* In Snort, leading NULL bytes (0x00) will be removed from content matches when determining/using the longest
content match unless fast_pattern is explicitly set. Suricata does not truncate anything, including NULL
bytes.

e Snort does not allow for all http_* buffers to be used for the fast pattern match (e.g. http_raw_¥*,
http_method, http_cookie, etc.). Suricata lets you use any 'http_*' buffer you want for the fast pattern match,
including http_raw_*' and " “http_cookie buffers.

* Suricata supports the fast_pattern:only syntax but technically it is not really implemented; the only is
silently ignored when encountered in a rule. It is still recommended that you use fast_pattern:only where
appropriate in case this gets implemented in the future and/or if the rule will be used by Snort as well.

* With Snort, unless fast_pattern is explicitly set, content matches in normalized HTTP Inspect buffers (e.g.
http content modifiers such http_uri, http_header, etc.) take precedence over non-HTTP Inspect content
matches, even if they are shorter. Suricata does the same thing and gives a higher 'priority' (precedence) to
http_* buffers (except for http_method, http_stat_code, and http_stat_msg).

e See Suricata Fast Pattern Determination Explained for full details on how Suricata automatically determines
which content to use as the fast pattern match.

e When in doubt about what is going to be use as the fast pattern match by Suricata, set fast_pattern ex-
plicitly in the rule and/or run Suricata with the --engine-analysis switch and view the generated file
(rules_fast_pattern.txt).

* Like Snort, the fast pattern match is checked before flowbits in Suricata.

» Using Hyperscan as the MPM matcher (mpm-algo setting) for Suricata can greatly improve performance, espe-
cially when it comes to fast pattern matching. Hyperscan will also take into account depth and offset when doing
fast pattern matching, something the other algorithms and Snort do not do.

* fast_pattern

8.43. Differences From Snort 175

https://blog.inliniac.net/2014/11/11/smtp-file-extraction-in-suricata/

Suricata User Guide, Release 7.0.0

8.43.22 Don't Cross The Streams

Suricata will examine network traffic as individual packets and, in the case of TCP, as part of a (reassembled) stream.
However, there are certain rule keywords that only apply to packets only (dsize, flags, ttl) and certain ones that
only apply to streams only (http_%*) and you can't mix packet and stream keywords. Rules that use packet keywords
will inspect individual packets only and rules that use stream keywords will inspect streams only. Snort is a little more
forgiving when you mix these — for example, in Snort you can use dsize (a packet keyword) with http_* (stream
keywords) and Snort will allow it although, because of dsize, it will only apply detection to individual packets (unless
PAF is enabled then it will apply it to the PDU).

If dsizeis in a rule that also looks for a stream-based application layer protocol (e.g. http), Suricata will not match on
the first application layer packet since dsize make Suricata evaluate the packet and protocol detection doesn't happen
until after the protocol is checked for that packet; subsequent packets in that flow should have the application protocol
set appropriately and will match rules using dsize and a stream-based application layer protocol.

If you need to check sizes on a stream in a rule that uses a stream keyword, or in a rule looking for a stream-based
application layer protocol, consider using the stream_size keyword and/or isdataat.

Suricata also supports these protocol values being used in rules and Snort does not:
* tcp-pkt — example:
— alert tcp-pkt ...
— This tells Suricata to only apply the rule to TCP packets and not the (reassembled) stream.
* tcp-stream — example:
— alert tcp-stream ...

— This tells Suricata to inspect the (reassembled) TCP stream only.

8.43.23 Alerts

* In Snort, the number of alerts generated for a packet/stream can be limited by the event_queue configuration.

* Suricata has an internal hard-coded limit of 15 alerts per packet/stream (and this cannot be configured); all rules
that match on the traffic being analyzed will fire up to that limit.

* Sometimes Suricata will generate what appears to be two alerts for the same TCP packet. This happens when
Suricata evaluates the packet by itself and as part of a (reassembled) stream.

176 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

8.43.24 Buffer Reference Chart

Buffer Snort 2.9.x Sup- | Suricata Sup- | PCRE Can be used | Suricata Fast Pattern Prior-
port? port? flag | as Fast Pat- | ity (lower number is higher
tern? priority)
content YES YES <none> YES 3
(no mod-
ifier)
http_methad YES YES M Suricata only 3
http_stat_cod€ES YES S Suricata only 3
http_stat_msYES YES Y Suricata only 3
uricon- YES but depre- | YES but depre- | U YES 2
tent cated, use http_uri | cated, use http_uri
instead instead
http_uri YES YES U YES 2
http_raw_uriYES YES I Suricata only 2
http_header YES YES H YES 2
http_raw_heddES YES D Suricata only 2
http_cooki¢ YES YES C Suricata only 2
http_raw_cpdkES NO (use | K NO n/a
http_raw_header
instead)
http_host | NO YES \W Suricata only 2
http_raw_hodfO YES Z Suricata only 2
http_client | b¥dS YES P YES 2
http_server| By YES Q Suricata only 2
http_user_agd¥d YES \Y% Suricata only 2
dns_query | NO YES n/a* | Suricata only 2
tls_sni NO YES n/a* Suricata only 2
tls_cert_issud¥O YES n/a* Suricata only 2
tls_cert_subjd® YES n/a* Suricata only 2
file_data YES YES n/a* YES 2

* Sticky buffer

8.44 Multiple Buffer Matching

Suricata 7 and newer now supports matching contents in multiple buffers within the same transaction.

For example a single DNS transaction that has two queries in it:

query 1: example.net query 2: something.com

Example rule:

alert dns SHOME_NET any -> $EXTERNAL_NET any (msg:"DNS Multiple Question Example Rule"; dns.query;
content: "example'; dns.query; content:".com'"; classtype:misc-activity; sid:1; rev:1;)

Within the single DNS query transaction, there are two queries and Suricata will set up two instances of a dns.query
buffer.

The first dns. query buffer will look for content:"example";

The second dns.query buffer will look for content:".com";

8.44. Multiple Buffer Matching 177

Suricata User Guide, Release 7.0.0

The example rule will alert on the example query since all the content matches are satisfied for the rule.
For matching multiple headers in HTTP2 traffic a rule using the new functionality would look like:

alert http2 any any -> any any (msg:"HTTP2 Multiple Header Buffer Example"; flow:established,to_server;
http.request_header; content:"method|3a 20|GET"; http.request_header; content: "authority|3a 20\example.com'’;
classtype:misc-activity; sid:1; rev:1;)

With HTTP2 there are multiple headers seen in the same flow record. We now have a way to write a rule in a more
efficient way using the multiple buffer capability.

Note Existing behavior when using sticky buffers still applies:
Example rule:

alert dns SHOME_NET any -> $8EXTERNAL_NET any (msg:"DNS Query Sticky Buffer Classic Example Rule";
dns.query; content:"example"; content:".net"; classtype:misc-activity; sid:1; rev:1;)

The above rule will alert on a single dns query containing "example.net" or "example.domain.net" since the rule content
matches are within a single dns. query buffer and all content match requirements of the rule are met.

Note: This is new behavior. In versions of Suricata prior to version 7 multiple statements of the same sticky buffer did
not make a second instance of the buffer. For example:

dns.query; content:"example"; dns.query; content:".com";
would be equivalent to:
dns.query; content:"example"; content:".com";

Using our example from above, the first query is for example.net which matches content:"example"; but does not match
content:".com";

The second query is for something.com which would match on the content:".com"; but not the content:"example";

So with the Suricata behavior prior to Suricata 7, the signature would not fire in this case since both content conditions
will not be met.

Multiple buffer matching is currently enabled for use with the following keywords:
e dns.query
e file.data
e file.magic
e file.name
e http.request_header
e http.response_header
* http2.header_name
e ike.vendor
e krb5_cname
e krb5_sname
* mgtt.subscribe.topic
e mqtt.unsubscribe.topic
e quic.cyu.hash
* quic.cyu.string

e tls.certs

178 Chapter 8. Suricata Rules

Suricata User Guide, Release 7.0.0

* tls.cert_subject

8.44. Multiple Buffer Matching 179

Suricata User Guide, Release 7.0.0

180 Chapter 8. Suricata Rules

CHAPTER
NINE

9.1 Rule Management with Suricata-Update

RULE MANAGEMENT

While it is possible to download and install rules manually, it is recommended to use a management tool for this.

suricata-update is the official way to update and manage rules for Suricata.

suricata-update is bundled with Suricata and is normally installed with it. For instructions on installing manually,
see http://suricata-update.readthedocs.io/en/latest/quickstart.html#install-suricata-update

Note: suricata-update is bundled with Suricata version 4.1 and later. It can be used with older versions as well.

It will have to be installed separately in that case.

To download the Emerging Threats Open ruleset, it is enough to simply run:

sudo suricata-update

This will download the ruleset into ~var/lib/suricata/rules/

Suricata's configuration will have to be updated to have a rules config like this:

default-rule-path: /var/lib/suricata/rules
rule-files:
- suricata.rules

Now (re)start Suricata.

9.1.1 Updating your rules

To update the rules, simply run

sudo suricata-update

It is recommended to update your rules frequently.

181

http://suricata-update.readthedocs.io/en/latest/quickstart.html#install-suricata-update

Suricata User Guide, Release 7.0.0

9.1.2 Using other rulesets

Suricata-Update is capable of making other rulesets accessible as well.

To see what is available, fetch the master index from the OISF hosts:

sudo suricata-update update-sources

Then have a look at what is available:

sudo suricata-update list-sources

This will give a result similar to

Name: oisf/trafficid
Vendor: OISF
Summary: Suricata Traffic ID ruleset
License: MIT
Name: ptresearch/attackdetection
Vendor: Positive Technologies
Summary: Positive Technologies Attack Detection Team ruleset
License: Custom
Name: sslbl/ssl-fp-blacklist
Vendor: Abuse.ch
Summary: Abuse.ch SSL Blacklist
License: Non-Commercial
Name: et/open
Vendor: Proofpoint
Summary: Emerging Threats Open Ruleset
License: MIT
Name: scwx/security
Vendor: Secureworks
Summary: Secureworks suricata-security ruleset.
License: Commercial
Parameters: secret-code
Subscription: https://www.secureworks.com/contact/ (Please reference CTU Countermeasures)
Name: scwx/malware
Vendor: Secureworks
Summary: Secureworks suricata-malware ruleset.
License: Commercial
Parameters: secret-code
Subscription: https://www.secureworks.com/contact/ (Please reference CTU Countermeasures)
Name: et/pro
Vendor: Proofpoint
Summary: Emerging Threats Pro Ruleset
License: Commercial
Replaces: et/open
Parameters: secret-code
Subscription: https://www.proofpoint.com/us/threat-insight/et-pro-ruleset

Each of the rulesets has a name that has a 'vendor' prefix, followed by a set name. For example, OISF's traffic id ruleset
is called 'oisf/trafficid'.

To enable 'oisf/trafficid’, enter:

sudo suricata-update enable-source oisf/trafficid
sudo suricata-update

Now restart Suricata again and the rules from the OISF TrafficID ruleset are loaded.

To see which rulesets are currently active, use "list-enabled-sources".

182 Chapter 9. Rule Management

Suricata User Guide, Release 7.0.0

9.1.3 Controlling which rules are used

By default suricata-update will merge all rules into a single file "/var/lib/suricata/rules/suricata.rules".

To enable rules that are disabled by default, use /etc/suricata/enable.conf

2019401 # enable signature with this sid
group:emerging-icmp.rules # enable this rulefile
re:trojan # enable all rules with this string

Similarly, to disable rules use /etc/suricata/disable.conf:

2019401 # disable signature with this sid
group:emerging-info.rules # disable this rulefile
re:heartbleed # disable all rules with this string

After updating these files, rerun suricata-update again:

sudo suricata-update

Finally restart Suricata.

9.1.4 Further reading

See https://suricata-update.readthedocs.io/en/latest/

9.2 Adding Your Own Rules

If you would like to create a rule yourself and use it with Suricata, this guide might be helpful.

Start creating a file for your rule. Use one of the following examples in your console/terminal window:

sudo nano local.rules
sudo vim local.rules

Write your rule, see Rules Format and save it.

Update the Suricata configuration file so your rule is included. Use one of the following examples:

sudo nano /etc/suricata/suricata.yaml
sudo vim /etc/suricata/suricata.yaml

and make sure your local.rules file is added to the list of rules:

default-rule-path: /usr/local/etc/suricata/rules

rule-files:
- suricata.rules
- /path/to/local.rules

Now, run Suricata and see if your rule is being loaded.

suricata -c /etc/suricata/suricata.yaml -i wlan®

9.2. Adding Your Own Rules 183

https://suricata-update.readthedocs.io/en/latest/

Suricata User Guide, Release 7.0.0

If the rule failed to load, Suricata will display as much information as it has when it deemed the rule un-loadable. Pay
special attention to the details: look for mistakes in special characters, spaces, capital characters, etc.

Next, check if your log-files are enabled in the Suricata configuration file suricata.yaml.
If you had to correct your rule and/or modify Suricata's YAML configuration file, you'll have to restart Suricata.
If you see your rule is successfully loaded, you can double check your rule by doing something that should trigger it.
By default, Suricata will log alerts to two places
* eve.json
e fast.log
These files will be located in the log output directory which is set by one of two methods:
1. Suricata configuration file: see default-log-dir for the name of the directory
2. Suricata command line: Using -1 /path/to/log-dir creates log files in the named directory.

The following example assumes that the log directory is named /var/log/suricata

tail -f /var/log/suricata/fast.log

If you would make a rule like this:

alert http any any -> any any (msg:"Do not read gossip during work";
content:"Scarlett"; nocase; classtype:policy-violation; sid:1; rev:1;)

Your alert should look like this:

09/15/2011-16:50:27.725288 [**] [1:1:1] Do not read gossip during work [**]
[Classification: Potential Corporate Privacy Violation] [Priority: 1] {TCP} 192.168.0.
—32:55604 -> 68.67.185.210:80

9.3 Rule Reloads

Suricata can reload the rules without restarting. This way, there is minimal service disruption.

This works by sending Suricata a signal or by using the unix socket. When Suricata is told to reload the rules these are
the basic steps it takes:

* Load new config to update rule variables and values.
* Load new rules

» Construct new detection engine

* Swap old and new detection engines

* Make sure all threads are updated

¢ Free old detection engine

Suricata will continue to process packets normally during this process. Keep in mind though, that the system should
have enough memory for both detection engines.

Signal:

kill -USR2 $(pidof suricata)

184 Chapter 9. Rule Management

Suricata User Guide, Release 7.0.0

There are two methods available when using the Unix socket.

Blocking reload

suricatasc -c reload-rules

Non blocking reload

suricatasc -c ruleset-reload-nonblocking

It is also possible to get information about the last reload via dedicated commands. See Commands in standard running
mode for more information.

9.4 Rules Profiling

If Suricata is built with the --enable-profiling-rules then the ruleset profiling can be activated on demand from the unix
socket and dumped from it.

To start profiling

surictasc -c ruleset-profile-start

To stop profiling

surictasc -c ruleset-profile-stop

To dump profiling

suricatasc -c ruleset-profile

A typical scenario to get rules performance would be

surictasc -c ruleset-profile-start
sleep 30

surictasc -c ruleset-profile-stop
suricatasc -c ruleset-profile

On busy systems, using the sampling capability to capture performance on a subset of packets can be obtained via the
sample-rate variable in the profiling section in the suricata.yaml file.

9.4. Rules Profiling 185

Suricata User Guide, Release 7.0.0

186 Chapter 9. Rule Management

CHAPTER
TEN

MAKING SENSE OUT OF ALERTS

When an alert happens it's important to figure out what it means. Is it serious? Relevant? A false positive?
To find out more about the rule that fired, it's always a good idea to look at the actual rule.

The first thing to look at in a rule is the description that follows the msg keyword. Let's consider an example:

msg:"ET SCAN sipscan probe";

The "ET" indicates the rule came from the Emerging Threats (Proofpoint) project. "SCAN" indicates the purpose of
the rule is to match on some form of scanning. Following that, a more or less detailed description is given.

Most rules contain some pointers to more information in the form of the "reference" keyword.

Consider the following example rule:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS \
(msg:"ET CURRENT_EVENTS Adobe Oday Shovelware"; \
flow:established,to_server; content:"GET "; nocase; depth:4; \
content:!"|0d Oa|Referer\:"; nocase; \
uricontent:"/ppp/listdir.php?dir="; \
pcre:"/\/[a-z]1{2}\/[a-z]{4}01\/ppp\/1listdir\.php\?dir=/U"; \
classtype:trojan-activity; \
reference:url,isc.sans.org/diary.html?storyid=7747; \
reference:url,doc.emergingthreats.net/2010496; \
reference:url,www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/CURRENT_EVENTS/CURRENT_
—Adobe; \
sid:2010496; rev:2;)

In this rule, the reference keyword indicates 3 urls to visit for more information:

isc.sans.org/diary.html?storyid=7747
doc.emergingthreats.net/2010496
www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/CURRENT_EVENTS/CURRENT_Adobe

Some rules contain a reference like: "reference:cve,2009-3958; " should allow you to find info about the specific
CVE using your favorite search engine.

It's not always straight forward and sometimes not all of that information is available publicly. Usually asking about it
on the signature support channel can be helpful.

In Rule Management with Suricata-Update more information on the rule sources and their documentation and support
methods can be found.

In many cases, looking at just the alert and the packet that triggered it won't be enough to be conclusive. When using
the default Eve settings a lot of metadata will be added to the alert.

187

Suricata User Guide, Release 7.0.0

For example, if a rule fired that indicates your web application is attacked, looking at the metadata might reveal that
the web application replied with 404 not found. This will usually mean the attack failed but not always.

Not every protocol leads to metadata generation, so when running an IDS engine like Suricata, it's often recommended
to combine it with full packet capture. Using tools like Evebox, Sguil or Snorby, the full TCP session or UDP flow can
be inspected.

Obviously there is a lot more to Incidence Response, but this should get you started.

188 Chapter 10. Making sense out of Alerts

CHAPTER
ELEVEN

PERFORMANCE

11.1 Runmodes

Suricata consists of several 'building blocks' called threads, thread-modules and queues. A thread is like a process that
runs on a computer. Suricata is multi-threaded, so multiple threads are active at once. A thread-module is a part of
a functionality. One module is for example for decoding a packet, another is the detect-module and another one the
output-module. A packet can be processed by more than one thread. The packet will then be passed on to the next
thread through a queue. Packets will be processed by one thread at a time, but there can be multiple packets being
processed at a time by the engine (see Max-pending-packets). A thread can have one or more thread-modules. If they
have more modules, they can only be active one a a time. The way threads, modules and queues are arranged together
is called the "Runmode".

11.1.1 Different runmodes
You can choose a runmode out of several predefined runmodes. The command line option --1ist-runmodes shows
all available runmodes. All runmodes have a name: single, workers, autofp.

Generally, the workers runmode performs the best. In this mode the NIC/driver makes sure packets are properly
balanced over Suricata's processing threads. Each packet processing thread then contains the full packet pipeline.

189

Suricata User Guide, Release 7.0.0

Runmode: Workers

Flow balancing happens in hardware or driver

For processing PCAP files, or in case of certain IPS setups (like NFQ), autofp is used. Here there are one or more
capture threads, that capture the packet and do the packet decoding, after which it is passed on to the flow worker
threads.

190 Chapter 11. Performance

Suricata User Guide, Release 7.0.0

Runmode: autofp

Flow balancing happens inside Suricata

11.1. Runmodes 191

Suricata User Guide, Release 7.0.0

Runmode: autofp pture threacs)

Flow balancing happens in both Suricata and hardware/driver

Finally, the single runmode is the same as the workers mode, however there is only a single packet processing thread.
This is mostly useful during development.

192 Chapter 11. Performance

Suricata User Guide, Release 7.0.0

Runmode: single

For more information about the command line options concerning the runmode, see Command Line Options.

11.1. Runmodes 193

Suricata User Guide, Release 7.0.0

11.1.2 Load balancing

Suricata may use different ways to load balance the packets to process between different threads with the configuration
option autofp-scheduler.

The default value is hash, which means the packet is assigned to threads using the 5-7 tuple hash, which is also used
anyways to store the flows in memory.

This option can also be set to - ippair : packets are assigned to threads using addresses only. - ftp-hash : same as hash
except for flows that may be ftp or ftp-data so that these flows get processed by the same thread. Like so, there is no
concurrency issue in recognizing ftp-data flows due to processing them before the ftp flow got processed. In case of
such a flow, a variant of the hash is used.

11.2 Packet Capture

11.2.1 Load balancing

To get the best performance, Suricata will need to run in 'workers' mode. This effectively means that there are multiple
threads, each running a full packet pipeline and each receiving packets from the capture method. This means that we
rely on the capture method to distribute the packets over the various threads. One critical aspect of this is that Suricata
needs to get both sides of a flow in the same thread, in the correct order.

The AF_PACKET and PF_RING capture methods both have options to select the 'cluster-type'. These default to 'clus-
ter_flow' which instructs the capture method to hash by flow (5 tuple). This hash is symmetric. Netmap does not have
a cluster_flow mode built-in. It can be added separately by using the "'Ib' tool":https://github.com/luigirizzo/netmap/
tree/master/apps/1b

On multi-queue NICs, which is almost any modern NIC, RSS settings need to be considered.

11.2.2 RSS

Receive Side Scaling is a technique used by network cards to distribute incoming traffic over various queues on the
NIC. This is meant to improve performance but it is important to realize that it was designed for normal traffic, not for
the IDS packet capture scenario. RSS using a hash algorithm to distribute the incoming traffic over the various queues.
This hash is normally not symmetrical. This means that when receiving both sides of a flow, each side may end up in
a different queue. Sadly, when deploying Suricata, this is the common scenario when using span ports or taps.

The problem here is that by having both sides of the traffic in different queues, the order of processing of packets
becomes unpredictable. Timing differences on the NIC, the driver, the kernel and in Suricata will lead to a high chance
of packets coming in at a different order than on the wire. This is specifically about a mismatch between the two traffic
directions. For example, Suricata tracks the TCP 3-way handshake. Due to this timing issue, the SYN/ACK may only
be received by Suricata long after the client to server side has already started sending data. Suricata would see this
traffic as invalid.

None of the supported capture methods like AF_PACKET, PF_RING or NETMAP can fix this problem for us. It would
require buffering and packet reordering which is expensive.

To see how many queues are configured:

$ ethtool -1 ens2fl

Channel parameters for ens2fl:
Pre-set maximums:

RX: 0

TX: 0

(continues on next page)

194 Chapter 11. Performance

https://github.com/luigirizzo/netmap/tree/master/apps/lb
https://github.com/luigirizzo/netmap/tree/master/apps/lb

Suricata User Guide, Release 7.0.0

(continued from previous page)

Other: 1
Combined: 64
Current hardware settings:
RX:

TX:
Other:
Combined:

o e —]

Some NIC's allow you to set it into a symmetric mode. The Intel X(L)710 card can do this in theory, but the drivers
aren't capable of enabling this yet (work is underway to try to address this). Another way to address is by setting a
special "Random Secret Key" that will make the RSS symmetrical. See http://www.ndsl.kaist.edu/~kyoungsoo/papers/
TR-symRSS.pdf (PDF).

In most scenario's however, the optimal solution is to reduce the number of RSS queues to 1:

Example:

Intel X710 with i40e driver:
ethtool -L $DEV combined 1

Some drivers do not support setting the number of queues through ethtool. In some cases there is a module load time
option. Read the driver docs for the specifics.

11.2.3 Offloading

Network cards, drivers and the kernel itself have various techniques to speed up packet handling. Generally these will
all have to be disabled.

LRO/GRO lead to merging various smaller packets into big 'super packets'. These will need to be disabled as they
break the dsize keyword as well as TCP state tracking.

Checksum offloading can be left enabled on AF_PACKET and PF_RING, but needs to be disabled on PCAP, NETMAP
and others.

11.2.4 Recommendations

Read your drivers documentation! E.g. for i40e the ethtool change of RSS queues may lead to kernel panics if done
wrong.

Generic: set RSS queues to 1 or make sure RSS hashing is symmetric. Disable NIC offloading.

AF_PACKET: 1 RSS queue and stay on kernel <=4.2 or make sure you have >=4.4.16, >=4.6.5 or >=4.7. Exception:
if RSS is symmetric cluster-type 'cluster_qm' can be used to bind Suricata to the RSS queues. Disable NIC offloading
except the rx/tx csum.

PF_RING: 1 RSS queue and use cluster-type 'cluster_flow'. Disable NIC offloading except the rx/tx csum.

NETMAP: 1 RSS queue. There is no flow based load balancing built-in, but the 'Ib' tool can be helpful. Another option
is to use the 'autofp' runmode. Exception: if RSS is symmetric, load balancing is based on the RSS hash and multiple
RSS queues can be used. Disable all NIC offloading.

11.2. Packet Capture 195

http://www.ndsl.kaist.edu/~kyoungsoo/papers/TR-symRSS.pdf
http://www.ndsl.kaist.edu/~kyoungsoo/papers/TR-symRSS.pdf

Suricata User Guide, Release 7.0.0

11.3 Tuning Considerations

Settings to check for optimal performance.

11.3.1 max-pending-packets: <number>
This setting controls the number simultaneous packets that the engine can handle. Setting this higher generally keeps
the threads more busy, but setting it too high will lead to degradation.

Suggested setting: 10000 or higher. Max is ~65000. This setting is per thread. The memory is set up at start and the
usage is as follows:

number_of.threads X max-pending-packets X (default-packet-size + ~750 bytes)

11.3.2 mpme-algo: <ac|hs|ac-bs|ac-ks>

Controls the pattern matcher algorithm. AC (Aho-Corasick) is the default. On supported platforms, Hyperscan is
the best option. On commodity hardware if Hyperscan is not available the suggested setting is mpm-algo: ac-ks
(Aho-Corasick Ken Steele variant) as it performs better than mpm-algo: ac

11.3.3 detect.profile: <low|medium|high|custom>

The detection engine tries to split out separate signatures into groups so that a packet is only inspected against signatures
that can actually match. As in large rule set this would result in way too many groups and memory usage similar groups
are merged together. The profile setting controls how aggressive this merging is done. The default setting of high
usually is good enough.

The "custom" setting allows modification of the group sizes:

custom-values:
toclient-groups: 100
toserver-groups: 100

In general, increasing will improve performance. It will lead to minimal increase in memory usage. The default value
for toclient-groups and toserver-groups with detect.profile: highis?75.

11.3.4 detect.sgh-mpm-context: <auto|single|full>

The multi pattern matcher can have it's context per signature group (full) or globally (single). Auto selects between
single and full based on the mpm-algo selected. ac, ac-bs, ac-ks, hs default to "single". Setting this to "full" with
mpm-algo: acormpm-algo: ac-ks offers better performance. Setting this to "full" with mpm-algo: hs is not
recommended as it leads to much higher startup time. Instead with Hyperscan either detect.profile: high or
bigger custom group size settings can be used as explained above which offers better performance than ac and ac-ks
even with detect.sgh-mpm-context: full.

196 Chapter 11. Performance

Suricata User Guide, Release 7.0.0

11.3.5 af-packet

If using af-packet (default on Linux) it is recommended that af-packet v3 is used for IDS/NSM deployments. For IPS
it is recommended af-packet v2. To make sure af-packet v3 is used it can specifically be enforced it in the af-packet
config section of suricata.yaml like so:

af-packet:
- interface: eth®

use-mmap: yes
tpacket-v3: yes

11.3.6 ring-size

Ring-size is another af-packet variable that can be considered for tuning and performance benefits. It basically means
the buffer size for packets per thread. So if the setting is ring-size: 100000 like below:

af-packet:
- interface: eth0®
threads: 5
ring-size: 100000

it means there will be 100,000 packets allowed in each buffer of the 5 threads. If any of the buffers gets filled (for
example packet processing can not keep up) that will result in packet drop counters increasing in the stats logs.

The memory used for those is set up and dedicated at start and is calculated as follows:

af-packet.threads X af-packet.ring-size X (default-packet-size + ~750 bytes)

where af-packet.threads, af-packet.ring-size, default-packet-size are the values set in suricata.yaml.
Config values for example for af-packet could be quickly displayed with on the command line as well with suricata
--dump-config |grep af-packet.

11.3.7 stream.bypass

Another option that can be used to improve performance is stream.bypass. In the example below:

Stream:
memcap: 64mb
checksum-validation: yes # reject wrong csums
inline: auto # auto will use inline mode in IPS mode, yes or no set it.
—sStatically
bypass: yes
reassembly:
memcap: 256mb
depth: 1mb # reassemble Imb into a stream
toserver-chunk-size: 2560
toclient-chunk-size: 2560
randomize-chunk-size: yes

Inspection will be skipped when stream.reassembly.depth of Imb is reached for a particular flow.

11.3. Tuning Considerations 197

Suricata User Guide, Release 7.0.0

11.4 Hyperscan

11.4.1 Introduction

"Hyperscan is a high performance regular expression matching library (...)" (https://www.intel.com/content/www/us/
en/developer/articles/technical/introduction-to-hyperscan.html)

In Suricata it can be used to perform multi pattern matching (mpm) or single pattern matching (spm).

Support for hyperscan in Suricata was initially implemented by Justin Viiret and Jim Xu from Intel via https://github.
com/OISF/suricata/pull/1965.

Hyperscan is only for Intel x86 based processor architectures at this time. For ARM processors, vectorscan is a drop
in replacement for hyperscan, https://github.com/VectorCamp/vectorscan.

11.4.2 Basic Installation (Package)

Some Linux distributions include hyperscan in their respective package collections.

Fedora 37+/Centos 8+: sudo dnf install hyperscan-devel Ubuntu/Debian: sudo apt-get install libhyperscan-dev

11.4.3 Advanced Installation (Source)

Hyperscan has the following dependencies in order to build from source:
* boost development libraries (minimum boost library version is 1.58)
* cmake
e C++ compiler (e.g. gcc-c++)
* libpcap development libraries
e pcre2 development libraries
¢ python3
* ragel
* sqlite development libraries

Note: git is an additional dependency if cloning the hyperscan GitHub repository. Otherwise downloading the hyper-
scan zip from the GitHub repository will work too.

The steps to build and install hyperscan are:

git clone https://github.com/intel/hyperscan
cd hyperscan

cmake -DBUILD_STATIC_AND_SHARED=1

cmake --build ./

sudo cmake --install ./

Note: Hyperscan can take a a long time to build/compile.

Note: It may be necessary to add /usr/local/lib or /usr/local/lib64 to the Id search path. Typically this is done by adding
a file under /etc/ld.so.conf.d/ with the contents of the directory location of libhs.so.5 (for hyperscan 5.x).

198 Chapter 11. Performance

https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-hyperscan.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-hyperscan.html
https://github.com/OISF/suricata/pull/1965
https://github.com/OISF/suricata/pull/1965
https://github.com/VectorCamp/vectorscan

Suricata User Guide, Release 7.0.0

11.4.4 Using Hyperscan

Confirm that the suricata version installed has hyperscan enabled.

suricata --build-info | grep Hyperscan
Hyperscan support: yes

To use hyperscan support, edit the suricata.yaml. Change the mpm-algo and spm-algo values to 'hs'.
Alternatively, use this command-line option: --set mpm-algo=hs --set spm-algo=hs

Note: The default suricata.yaml configuration settings for mpm-algo and spm-algo are "auto". Suricata will use hyper-
scan if it is present on the system in case of the "auto" setting.

If the current suricata installation does not have hyperscan support, refer to Installation

11.5 High Performance Configuration

11.5.1 NIC

One of the major dependencies for Suricata's performance is the Network Interface Card. There are many vendors and
possibilities. Some NICs have and require their own specific instructions and tools of how to set up the NIC. This
ensures the greatest benefit when running Suricata. Vendors like Napatech, Netronome, Accolade, Myricom include
those tools and documentation as part of their sources.

For Intel, Mellanox and commodity NICs the following suggestions below could be utilized.

It is recommended that the latest available stable NIC drivers are used. In general when changing the NIC settings it
is advisable to use the latest ethtool version. Some NICs ship with their own ethtool that is recommended to be
used. Here is an example of how to set up the ethtool if needed:

wget https://mirrors.edge.kernel.org/pub/software/network/ethtool/ethtool-5.2.tar.xz
tar -xf ethtool-5.2.tar.xz

cd ethtool-5.2

./configure && make clean && make && make install

/usr/local/sbin/ethtool --version

When doing high performance optimisation make sure irgbalance is off and not running:

service irgbalance stop

Depending on the NIC's available queues (for example Intel's x710/i40 has 64 available per port/interface) the worker
threads can be set up accordingly. Usually the available queues can be seen by running:

/usr/local/sbin/ethtool -1 ethl

Some NICs - generally lower end 1Gbps - do not support symmetric hashing see Packet Capture. On those systems
due to considerations for out of order packets the following setup with af-packet is suggested (the example below uses
ethl):

/usr/local/sbin/ethtool -L ethl combined 1

then set up af-packet with number of desired workers threads threads: auto (auto by default will use number of
CPUs available) and cluster-type: cluster_flow (also the default setting)

11.5. High Performance Configuration 199

Suricata User Guide, Release 7.0.0

For higher end systems/NICs a better and more performant solution could be utilizing the NIC itself a bit more. x710/i40
and similar Intel NICs or Mellanox MT27800 Family [ConnectX-5] for example can easily be set up to do a bigger
chunk of the work using more RSS queues and symmetric hashing in order to allow for increased performance on the
Suricata side by using af-packet with cluster-type: cluster_gm mode. In that mode with af-packet all packets
linked by network card to a RSS queue are sent to the same socket. Below is an example of a suggested config set up
based on a 16 core one CPU/NUMA node socket system using x710:

rmmod i40e && modprobe i40e
ifconfig ethl down
/usr/local/sbin/ethtool -L ethl
/usr/local/sbin/ethtool -K ethl
/usr/local/sbin/ethtool -K ethl
ifconfig ethl up
/usr/local/sbin/ethtool -X ethl

—.6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:

—equal 16

/usr/local/sbin/ethtool -A ethl
/usr/local/sbin/ethtool -C ethl
/usr/local/sbin/ethtool -G ethl

combined 16
rxhash on
ntuple on

hkey..
6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5

rx off
adaptive-rx off adaptive-tx off rx-usecs 125
rx 1024

A:6D:5A:6D:5A

The commands above can be reviewed in detail in the help or manpages of the ethtool. In brief the sequence makes
sure the NIC is reset, the number of RSS queues is set to 16, load balancing is enabled for the NIC, a low entropy
toeplitz key is inserted to allow for symmetric hashing, receive offloading is disabled, the adaptive control is disabled
for lowest possible latency and last but not least, the ring rx descriptor size is set to 1024. Make sure the RSS hash

function is Toeplitz:

/usr/local/sbin/ethtool -X ethl

hfunc toeplitz

Let the NIC balance as much as possible:

for proto in tcp4 udp4 tcp6 udp6; do
/usr/local/sbin/ethtool -N ethl rx-flow-hash $proto sdfn

done

In some cases:

/usr/local/sbin/ethtool -N ethl

rx-flow-hash $proto sd

might be enough or even better depending on the type of traffic. However not all NICs allow it. The sd specifies the
multi queue hashing algorithm of the NIC (for the particular proto) to use src IP, dst IP only. The sdfn allows for the
tuple src IP, dst IP, src port, dst port to be used for the hashing algorithm. In the af-packet section of suricata.yaml:

af-packet:
- interface: ethl
threads: 16
cluster-id: 99
cluster-type: cluster_gm

200

Chapter 11. Performance

Suricata User Guide, Release 7.0.0

11.5.2 CPU affinity and NUMA

Intel based systems

If the system has more then one NUMA node there are some more possibilities. In those cases it is generally recom-
mended to use as many worker threads as cpu cores available/possible - from the same NUMA node. The example
below uses a 72 core machine and the sniffing NIC that Suricata uses located on NUMA node 1. In such 2 socket con-
figurations it is recommended to have Suricata and the sniffing NIC to be running and residing on the second NUMA
node as by default CPU 0 is widely used by many services in Linux. In a case where this is not possible it is recom-
mended that (via the cpu affinity config section in suricata.yaml and the irq affinity script for the NIC) CPU 0 is never

used.

In the case below 36 worker threads are used out of NUMA node 1's CPU, af-packet runmode with cluster-type:

cluster_qm.

If the CPU's NUMA set up is as follows:

1scpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 72

On-line CPU(s) list: 0-71
Thread(s) per core: 2
Core(s) per socket: 18

Socket(s): 2

NUMA node(s): 2

Vendor ID: GenuinelIntel
CPU family: 6

Model: 79

Model name: Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz
Stepping: 1

CPU MHz: 1199.724

CPU max MHz: 3600.0000
CPU min MHz: 1200.0000
BogoMIPS: 4589.92
Virtualization: VT-x

L1d cache: 32K

L1i cache: 32K

L2 cache: 256K

L3 cache: 46080K

NUMA node® CPU(s): 0-17,36-53
NUMA nodel CPU(s): 18-35,54-71

It is recommended that 36 worker threads are used and the NIC set up could be as follows:

rmmod i40e && modprobe i40e

ifconfig ethl down

/usr/local/sbin/ethtool -L ethl combined 36
/usr/local/sbin/ethtool -K ethl rxhash on
/usr/local/sbin/ethtool -K ethl ntuple on
ifconfig ethl up

./set_irq_affinity local ethl
/usr/local/sbin/ethtool -X ethl hkey..

(continues on next page)

11.5. High Performance Configuration

201

Suricata User Guide, Release 7.0.0

(continued from previous page)

—6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5
—equal 36
/usr/local/sbin/ethtool -A ethl rx off tx off
/usr/local/sbin/ethtool -C ethl adaptive-rx off adaptive-tx off rx-usecs 125
/usr/local/sbin/ethtool -G ethl rx 1024
for proto in tcp4 udp4 tcp6 udp6; do
echo "/usr/local/sbin/ethtool -N ethl rx-flow-hash $proto sdfn"
/usr/local/sbin/ethtool -N ethl rx-flow-hash $proto sdfn
done

A:6D:5A:6D:5A

In the example above the set_irq_affinity script is used from the NIC driver's sources. In the cpu affinity section
of suricata.yaml config:

Suricata is multi-threaded. Here the threading can be influenced.
threading:
cpu-affinity:
- management-cpu-set:
cpu: ["1-10"] # include only these CPUs in affinity settings
- receive-cpu-set:
cpu: ["0-10"] # include only these CPUs in affinity settings
- worker-cpu-set:
cpu: ["18-35", "54-71"]
mode: "exclusive"
prio:
low: [O]
medium: ["1"]
high: ["18-35","54-71"]
default: "high"

In the af-packet section of suricata.yaml config :

- interface: ethl
Number of receive threads. "auto" uses the number of cores
threads: 18
cluster-id: 99
cluster-type: cluster_gm
defrag: no
use-mmap: yes
mmap-locked: yes
tpacket-v3: yes
ring-size: 100000
block-size: 1048576

- interface: ethl
Number of receive threads. "auto" uses the number of cores
threads: 18
cluster-id: 99
cluster-type: cluster_gm
defrag: no
use-mmap: yes
mmap-locked: yes
tpacket-v3: yes
ring-size: 100000
block-size: 1048576

202 Chapter 11. Performance

Suricata User Guide, Release 7.0.0

That way 36 worker threads can be mapped (18 per each af-packet interface slot) in total per CPUs NUMA 1 range -
18-35,54-71. That part is done via the worker-cpu-set affinity settings. ring-size and block-size in the config
section above are decent default values to start with. Those can be better adjusted if needed as explained in Tuning
Considerations.

AMD based systems

Another example can be using an AMD based system where the architecture and design of the system itself plus the
NUMA node's interaction is different as it is based on the HyperTransport (HT) technology. In that case per NUMA
thread/lock would not be needed. The example below shows a suggestion for such a configuration utilising af-packet,
cluster-type: cluster_flow. The Mellanox NIC is located on NUMA 0.

The CPU set up is as follows:

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 128

On-line CPU(s) list: 0-127
Thread(s) per core: 2

Core(s) per socket: 32

Socket(s): 2

NUMA node(s): 8

Vendor ID: AuthenticAMD
CPU family: 23

Model: 1

Model name: AMD EPYC 7601 32-Core Processor
Stepping: 2

CPU MHz: 1200.000

CPU max MHz: 2200.0000

CPU min MHz: 1200.0000
BogoMIPS: 4391.55
Virtualization: AMD-V

L1d cache: 32K

L1i cache: 64K

L2 cache: 512K

L3 cache: 8192K

NUMA node® CPU(s): 0-7,64-71
NUMA nodel CPU(s): 8-15,72-79
NUMA node2 CPU(s): 16-23,80-87
NUMA node3 CPU(s): 24-31,88-95
NUMA node4 CPU(s): 32-39,96-103
NUMA node5 CPU(s): 40-47,104-111
NUMA node6 CPU(s): 48-55,112-119
NUMA node7 CPU(s): 56-63,120-127

The ethtool, show_irq_affinity.sh and set_irq_affinity_cpulist. sh tools are provided from the official
driver sources. Set up the NIC, including offloading and load balancing:

ifconfig eno6 down

/opt/mellanox/ethtool/sbin/ethtool -L eno6 combined 15
/opt/mellanox/ethtool/sbin/ethtool -K eno6 rxhash on
/opt/mellanox/ethtool/sbin/ethtool -K eno6 ntuple on

(continues on next page)

11.5. High Performance Configuration 203

Suricata User Guide, Release 7.0.0

(continued from previous page)

ifconfig eno6 up

/sbin/set_irqg_affinity_cpulist.sh 1-7,64-71 eno6

/opt/mellanox/ethtool/sbin/ethtool -X eno6 hfunc toeplitz
/opt/mellanox/ethtool/sbin/ethtool -X eno6 hkey.
—6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5

A:6D:5A:6D:5A

In the example above (1-7,64-71 for the irq affinity) CPU 0 is skipped as it is usually used by default on Linux systems
by many applications/tools. Let the NIC balance as much as possible:

for proto in tcp4 udp4 tcp6 udp6; do
/usr/local/sbin/ethtool -N ethl rx-flow-hash $proto sdfn
done

In the cpu affinity section of suricata.yaml config :

Suricata is multi-threaded. Here the threading can be influenced.
threading:
set-cpu-affinity: yes
cpu-affinity:
- management-cpu-set:
cpu: ["120-127"] # include only these cpus in affinity settings
- receive-cpu-set:
cpu: [0] # include only these cpus in affinity settings
- worker-cpu-set:
cpu: ["8-55" 1]
mode: "exclusive"
prio:
high: ["8-55"]
default: "high"

In the af-packet section of suricata.yaml config:

- interface: ethl
Number of receive threads. "auto" uses the number of cores
threads: 48 # 48 worker threads on cpus "8-55" above
cluster-id: 99
cluster-type: cluster_flow
defrag: no
use-mmap: yes
mmap-locked: yes
tpacket-v3: yes
ring-size: 100000
block-size: 1048576

In the example above there are 15 RSS queues pinned to cores 1-7,64-71 on NUMA node 0 and 40 worker threads
using other CPUs on different NUMA nodes. The reason why CPU 0 is skipped in this set up is as in Linux systems
it is very common for CPU 0 to be used by default by many tools/services. The NIC itself in this config is positioned
on NUMA 0 so starting with 15 RSS queues on that NUMA node and keeping those off for other tools in the system
could offer the best advantage.

Note: Performance and optimization of the whole system can be affected upon regular NIC driver and pkg/kernel
upgrades so it should be monitored regularly and tested out in QA/test environments first. As a general suggestion it

204 Chapter 11. Performance

Suricata User Guide, Release 7.0.0

is always recommended to run the latest stable firmware and drivers as instructed and provided by the particular NIC
vendor.

Other considerations

Another advanced option to consider is the isolcpus kernel boot parameter is a way of allowing CPU cores to be
isolated for use of general system processes. That way ensures total dedication of those CPUs/ranges for the Suricata
process only.

stream.wrong_thread / tcp.pkt_on_wrong_thread are counters available in stats.log or eve.json as
event_type: stats thatindicate issues with the load balancing. There could be traffic/NICs settings related as well.
In very high/heavily increasing counter values it is recommended to experiment with a different load balancing method
either via the NIC or for example using XDP/eBPF. There is an issue open https://redmine.openinfosecfoundation.org/

issues/2725 that is a placeholder for feedback and findings.

11.6 Statistics

The stats.log produces statistics records on a fixed interval, by default every 8 seconds.

11.6.1 stats.log file

Counter | TM Name | Value
flow_mgr.closed_pruned | FlowManagerThread | 154033
flow_mgr.new_pruned | FlowManagerThread | 67800
flow_mgr.est_pruned | FlowManagerThread | 100921
flow.memuse | FlowManagerThread | 6557568
flow. spare | FlowManagerThread | 10002
flow.emerg_mode_entered | FlowManagerThread | 0
flow.emerg_mode_over | FlowManagerThread | 0
decoder.pkts | RxPcapem2l | 450001754
decoder.bytes | RxPcapem21 | 409520714250
decoder. ipv4 | RxPcapem21 | 449584047
decoder.ipv6 | RxPcapem21 | 9212
decoder.ethernet | RxPcapem21l | 450001754
decoder.raw | RxPcapem21 | O
decoder.sll | RxPcapem21 | 0
decoder. tcp | RxPcapem21 | 448124337
decoder.udp | RxPcapem21 | 542040
decoder.sctp | RxPcapem21 | 0
decoder.icmpv4 | RxPcapem2l | 82292
decoder.icmpv6 | RxPcapem2l | 9164
decoder. ppp | RxPcapem21 | ®

decoder . pppoe | RxPcapem21 | ©
decoder.gre | RxPcapem21 | 0
decoder.vlan | RxPcapem21l | ®
decoder.avg_pkt_size | RxPcapem2l | 910
decoder.max_pkt_size | RxPcapem2l | 1514

(continues on next page)

11.6. Statistics

205

https://redmine.openinfosecfoundation.org/issues/2725
https://redmine.openinfosecfoundation.org/issues/2725

Suricata User Guide, Release 7.0.0

(continued from previous page)

defrag.ipv4.fragments | RxPcapem21
defrag.ipv4.reassembled | RxPcapem2l
defrag.ipv4.timeouts | RxPcapem21
defrag.ipv6.fragments | RxPcapem2l
defrag.ipv6.reassembled | RxPcapem21l
defrag.ipv6.timeouts | RxPcapem21l
tcp.sessions | Detect
tcp.ssn_memcap_drop | Detect
tcp.pseudo | Detect
tcp.invalid_checksum | Detect
tcp.no_flow | Detect
tcp.reused_ssn | Detect
tcp.memuse | Detect
tcp.syn | Detect
tcp.synack | Detect
tcp.rst | Detect
tcp.segment_memcap_drop | Detect
tcp.stream_depth_reached | Detect
tcp.reassembly_memuse | Detect
tcp.reassembly_gap | Detect
detect.alert | Detect

S DD

41184

0

2087
8358

0

11
36175872
85902
83385
84326

0

109
67755264
789
14721

Detecting packet loss

At shut down, Suricata reports the packet loss statistics it gets from pcap, pfring or afpacket

[18088] 30/5/2012 -- 07:39:18 - (RxPcapem21) Packets 451595939, bytes 410869083410
[18088] 30/5/2012 -- 07:39:18 - (RxPcapem21) Pcap Total:451674222 Recv:451596129.,

—Drop:78093 (0.0%).

Usually, this is not the complete story though. These are kernel drop stats, but the NIC may also have dropped packets.

Use ethtool to get to those:

ethtool -S em2

NIC statistics:
rx_packets: 35430208463
tx_packets: 216072
rx_bytes: 32454370137414
tx_bytes: 53624450

rx_broadcast: 17424355
tx_broadcast: 133508
rx_multicast: 5332175
tx_multicast: 82564

rx_errors: 47
tx_errors: 0
tx_dropped: 0O

multicast: 5332175

collisions: ®

rx_length_errors: 0
rx_over_errors: 0

rx_crc_errors:

51

(continues on next page)

206

Chapter 11. Performance

Suricata User Guide, Release 7.0.0

(continued from previous page)

rx_frame_errors: 0
rx_no_buffer_count: 0
rx_missed_errors: 0
tx_aborted_errors: 0
tx_carrier_errors: 0
tx_fifo_errors: 0
tx_heartbeat_errors: 0
tx_window_errors: 0
tx_abort_late_coll: ©
tx_deferred_ok: 0
tx_single_coll_ok: 0
tx_multi_coll_ok: ©
tx_timeout_count: O
tx_restart_queue: 0
rx_long_length_errors: 0
rx_short_length_errors: 0
rx_align_errors: 0
tx_tcp_seg_good: 0O
tx_tcp_seg_failed: 0
rx_flow_control_xon: 0
rx_flow_control_xoff: 0
tx_flow_control_xon: 0
tx_flow_control_xoff: 0
rx_long_byte_count: 32454370137414
rx_csum_offload_good: 35270755306
rx_csum_offload_errors: 65076
alloc_rx_buff_failed: ©
tx_smbus: 0

rx_smbus: 0

dropped_smbus: 0

11.6.2 Kernel drops
stats.log contains interesting information in the capture.kernel_packets and capture.kernel_drops. The meaning of them
is different following the capture mode.
In AF_PACKET mode:
* kernel_packets is the number of packets correctly sent to userspace
* kernel_drops is the number of packets that have been discarded instead of being sent to userspace
In PF_RING mode:
* kernel_packets is the total number of packets seen by pf_ring
¢ kernel_drops is the number of packets that have been discarded instead of being sent to userspace

In the Suricata stats.log the TCP data gap counter is also an indicator, as it accounts missing data packets in TCP
streams:

tcp.reassembly_gap | Detect | 789

Ideally, this number is 0. Not only pkt loss affects it though, also bad checksums and stream engine running out of
memory.

11.6. Statistics 207

Suricata User Guide, Release 7.0.0

11.6.3 Tools to plot graphs

Some people made nice tools to plot graphs of the statistics file.
¢ ipython and matplotlib script
* Monitoring with Zabbix or other and Code on GitHub

11.7 Ignoring Traffic

In some cases there are reasons to ignore certain traffic. Certain hosts may be trusted, or perhaps a backup stream
should be ignored.

11.7.1 capture filters (BPF)

Through BPFs the capture methods pcap, af-packet, netmap and pf_ring can be told what to send to Suricata, and what
not. For example a simple filter 'tcp’ will only capture tcp packets.

If some hosts and or nets need to be ignored, use something like "not (host IP1 or IP2 or IP3 or net NET/24)".

Example:

not host 1.2.3.4

Capture filters are specified on the command-line after all other options:

suricata -i eth® -v not host 1.2.3.4
suricata -i enol -c suricata.yaml tcp or udp

Capture filters can be set per interface in the pcap, af-packet, netmap and pf_ring sections. It can also be put in a file:

echo "not host 1.2.3.4" > capture-filter.bpf
suricata -i ens5f® -F capture-filter.bpf

Using a capture filter limits what traffic Suricata processes. So the traffic not seen by Suricata will not be inspected,
logged or otherwise recorded.

BPF and IPS

In case of IPS modes using af-packet and netmap, BPFs affect how traffic is forwarded. If a capture NIC does not
capture a packet because of a BPF, it will also not be forwarded to the peering NIC.

So in the example of not host 1.2.3.4, traffic to and from the IP 1.2.3.4 is effectively dropped.

208 Chapter 11. Performance

https://github.com/regit/suri-stats
http://christophe.vandeplas.com/2013/11/suricata-monitoring-with-zabbix-or-other.html
https://github.com/cvandeplas/suricata_stats

Suricata User Guide, Release 7.0.0

11.7.2 pass rules

Pass rules are Suricata rules that if matching, pass the packet and in case of TCP the rest of the flow. They look like
normal rules, except that instead of alert or drop they use pass as the action.

Example:

pass ip 1.2.3.4 any <> any any (msg:'pass all traffic from/to 1.2.3.4"; sid:1;)

A big difference with capture filters is that logs such as Eve or http.log are still generated for this traffic.

11.7.3 suppress

Suppress rules can be used to make sure no alerts are generated for a host. This is not efficient however, as the sup-
pression is only considered post-matching. In other words, Suricata first inspects a rule, and only then will it consider
per-host suppressions.

Example:

suppress gen_id 0, sig_id 0, track by_src, ip 1.2.3.4

11.7.4 encrypted traffic

The TLS app layer parser has the ability to stop processing encrypted traffic after the initial handshake. By setting the
app-layer.protocols.tls.encryption-handling option to bypass the rest of this flow is ignored. If flow bypass is enabled,
the bypass is done in the kernel or in hardware.

11.7.5 bypassing traffic

Aside from using the bypass keyword in rules, there are three other ways to bypass traffic.

* Within suricata (local bypass). Suricata reads a packet, decodes it, checks it in the flow table. If the corresponding
flow is local bypassed then it simply skips all streaming, detection and output and the packet goes directly out in
IDS mode and to verdict in IPS mode.

» Within the kernel (capture bypass). When Suricata decides to bypass it calls a function provided by the cap-
ture method to declare the bypass in the capture. For NFQ this is a simple mark that will be used by the ipt-
ables/nftablesruleset. For AF_PACKET this will be a call to add an element in an eBPF hash table stored in
kernel.

» Within the NIC driver. This method relies upon XDP, XDP can process the traffic prior to reaching the kernel.
Additional bypass documentation:

https://suricon.net/wp-content/uploads/2017/12/SuriCon17-Manev_Purzynski.pdf https://www.stamus-networks.
com/2016/09/28/suricata-bypass-feature/

11.7. Ignoring Traffic 209

https://suricon.net/wp-content/uploads/2017/12/SuriCon17-Manev_Purzynski.pdf
https://www.stamus-networks.com/2016/09/28/suricata-bypass-feature/
https://www.stamus-networks.com/2016/09/28/suricata-bypass-feature/

Suricata User Guide, Release 7.0.0

11.8 Packet Profiling

In this guide will be explained how to enable packet profiling and use it with the most recent code of Suricata on
Ubuntu. It is based on the assumption that you have already installed Suricata once from the GIT repository.

Packet profiling is convenient in case you would like to know how long packets take to be processed. It is a way to figure
out why certain packets are being processed quicker than others, and this way a good tool for developing Suricata.

Update Suricata by following the steps from Installation from GIT. Start at the end at

cd suricata/suricata
git pull

And follow the described next steps. To enable packet profiling, make sure you enter the following during the config-
uring stage:

./configure --enable-profiling

Find a folder in which you have pcaps. If you do not have pcaps yet, you can get these with Wireshark. See Sniffing
Packets with Wireshark.

Go to the directory of your pcaps. For example:

cd ~/Desktop

With the 1s command you can see the content of the folder. Choose a folder and a pcap file

for example:

cd ~/Desktop/2011-05-05

Run Suricata with that pcap:

suricata -c /etc/suricata/suricata.yaml -r log.pcap.(followed by the number/name of your.
—pcap)

for example:

suricata -c /etc/suricata/suricata.yaml -r log.pcap.1304589204

11.9 Rule Profiling

Num Rule Gid Rev Ticks % Checks Matches Max Ticks.
— Avg Ticks Avg Match Avg No Match

1 2210021 1 3 12037 4.96 1 1 12037 o
- 12037.00 12037.00 0.00

2 2210054 1 1 107479 44.26 12 0 35805 o
— 8956.58 0.00 8956.58

(continues on next page)

210 Chapter 11. Performance

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Sniffing_Packets_with_Wireshark
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Sniffing_Packets_with_Wireshark

Suricata User Guide, Release 7.0.0

(continued from previous page)

3 2210053 1 1 4513 1.86 1 0 4513 o
— 4513.00 0.00 4513.00
4 2210023 1 1 3077 1.27 1 0 3077 o
— 3077.00 0.00 3077.00
5 2210008 1 1 3028 1.25 1 0 3028 o
- 3028.00 0.00 3028.00
6 2210009 1 1 2945 1.21 1 0 2945 o
— 2945.00 0.00 2945.00
7 2210055 1 1 2945 1.21 1 0 2945 o
— 2945.00 0.00 2945.00
8 2210007 1 1 2871 1.18 1 0 2871 o
— 2871.00 0.00 2871.00
9 2210005 1 1 2871 1.18 1 0 2871 o
— 2871.00 0.00 2871.00
10 2210024 1 1 2846 1.17 1 0 2846 o
— 2846.00 0.00 2846.00

The meaning of the individual fields:
* Ticks -- total ticks spent on this rule, so a sum of all inspections
* % -- share of this single sig in the total cost of inspection
* Checks -- number of times a signature was inspected
* Matches -- number of times it matched. This may not have resulted in an alert due to suppression and threshold-
ing.
* Max ticks -- single most expensive inspection
* Avg ticks -- per inspection average, so "ticks" / "checks".
* Avg match -- avg ticks spent resulting in match
* Avg No Match -- avg ticks spent resulting in no match.

The "ticks" are CPU clock ticks: http://en.wikipedia.org/wiki/CPU_time

11.10 Tcmalloc

'tcmalloc' is a library Google created as part of the google-perftools suite for improving memory handling in a threaded
program. It's very simple to use and does work fine with Suricata. It leads to minor speed ups and also reduces memory
usage quite a bit.

11.10.1 Installation

On Ubuntu, install the libtcmalloc-minimal4 package:

apt-get install libtcmalloc-minimal4

On Fedora, install the gperftools-libs package:

yum install gperftools-libs

11.10. Tcmalloc 211

http://en.wikipedia.org/wiki/CPU_time

Suricata User Guide, Release 7.0.0

11.10.2 Usage

Use the tcmalloc by preloading it:
Ubuntu:

LD_PRELOAD="/usr/1ib/x86_64-1inux-gnu/libtcmalloc_minimal.so.4" suricata -c suricata.
~yaml -i eth®

Fedora:

LD_PRELOAD="/usr/lib64/libtcmalloc_minimal.so.4" suricata -c suricata.yaml -i eth®

11.11 Performance Analysis

There are many potential causes for performance issues. In this section we will guide you through some options. The
first part will cover basic steps and introduce some helpful tools. The second part will cover more in-depth explanations
and corner cases.

11.11.1 System Load

The first step should be to check the system load. Run a top tool like htop to get an overview of the system load and if
there is a bottleneck with the traffic distribution. For example if you can see that only a small number of cpu cores hit
100% all the time and others don't, it could be related to a bad traffic distribution or elephant flows like in the screenshot
where one core peaks due to one big elephant flow.

142 thr; 5 runnin

1 4.52 5.88 4.
: 28 days, 14:22:21

If all cores are at peak load the system might be too slow for the traffic load or it might be misconfigured. Also keep an
eye on memory usage, if the actual memory usage is too high and the system needs to swap it will result in very poor
performance.

The load will give you a first indication where to start with the debugging at specific parts we describe in more detail
in the second part.

212 Chapter 11. Performance

Suricata User Guide, Release 7.0.0

11.11.2 Lodfiles

The next step would be to check all the log files with a focus on stats.log and suricata.log if any obvious issues are
seen. The most obvious indicator is the capture.kernel_drops value that ideally would not even show up but should be
below 1% of the capture.kernel_packets value as high drop rates could lead to a reduced amount of events and alerts.

If memcap is seen in the stats the memcap values in the configuration could be increased. This can result to higher
memory usage and should be taken into account when the settings are changed.

Don't forget to check any system logs as well, even a dmesg run can show potential issues.

11.11.3 Suricata Load

Besides the system load, another indicator for potential performance issues is the load of Suricata itself. A helpful tool
for that is perf which helps to spot performance issues. Make sure you have it installed and also the debug symbols
installed for Suricata or the output won't be very helpful. This output is also helpful when you report performance
issues as the Suricata Development team can narrow down possible issues with that.

sudo perf top -p $(pidof suricata)

If you see specific function calls at the top in red it's a hint that those are the bottlenecks. For example if you see IPOn-
lyMatchPacket it can be either a result of high drop rates or incomplete flows which result in decreased performance.
To look into the performance issues on a specific thread you can pass -t TID to perf top. In other cases you can see
functions that give you a hint that a specific protocol parser is used a lot and can either try to debug a performance bug
or try to filter related traffic.

11.11. Performance Analysis 213

Suricata User Guide, Release 7.0.0

o

L
]
-]
]
]
-]
]
-]
:]
]
-]
]
-]
:]
]
-]
:]
-]
]
]
-]
:]
-]
]
]
.]
]
]
]
]
-]
]
]
1
]
-]
]
]
1
]
-]
]
]
.]
]
.]
]
]
-]
]
-]

In general try to play around with the different configuration options that Suricata does provide with a focus on the
options described in High Performance Configuration.

214 Chapter 11. Performance

Suricata User Guide, Release 7.0.0

11.11.4 Traffic

In most cases where the hardware is fast enough to handle the traffic but the drop rate is still high it's related to specific
traffic issues.

Basics

Some of the basic checks are:

¢ Check if the traffic is bidirectional, if it's mostly unidirectional you're missing relevant parts of the flow (see
tshark example at the bottom). Another indicator could be a big discrepancy between SYN and SYN-ACK as
well as RST counter in the Suricata stats.

* Check for encapsulated traffic, while GRE, MPLS etc. are supported they could also lead to performance issues.
Especially if there are several layers of encapsulation.

 Use tools like iftop to spot elephant flows. Flows that have a rate of over 1Gbit/s for a long time can result in one
cpu core peak at 100% all the time and increasing the droprate while it might not make sense to dig deep into
this traffic.

* Another approach to narrow down issues is the usage of bpf filter. For example filter all HTTPS traffic with not
port 443 to exclude traffic that might be problematic or just look into one specific port port 25 if you expect
some issues with a specific protocol. See /gnoring Traffic for more details.

e If VLAN is used it might help to disable vlan.use-for-tracking in scenarios where only one direction of the flow
has the VLAN tag.

Advanced

There are several advanced steps and corner cases when it comes to a deep dive into the traffic.

If VLAN QinQ (IEEE 802.1ad) is used be very cautious if you use cluster_gm in combination with Intel drivers and
AF_PACKET runmode. While the RFC expects ethertype 0x8100 and 0x88A8 in this case (see https://en.wikipedia.
org/wiki/IEEE_802.1ad) most implementations only add 0x8100 on each layer. If the first seen layer has the same
VLAN tag but the inner one has different VLAN tags it will still end up in the same queue in cluster_gm mode. This
was observed with the i40e driver up to 2.8.20 and the firmware version up to 7.00, feel free to report if newer versions
have fixed this (see https://suricata.io/support/).

If you want to use tshark to get an overview of the traffic direction use this command:

sudo tshark -i $INTERFACE -q -z conv,ip -a duration:10

The output will show you all flows within 10s and if you see O for one direction you have unidirectional traffic, thus
you don't see the ACK packets for example. Since Suricata is trying to work on flows this will have a rather big impact
on the visibility. Focus on fixing the unidirectional traffic. If it's not possible at all you can enable async-oneside in
the stream configuration setting.

Check for other unusual or complex protocols that aren't supported very well. You can try to filter those to see if it has
any impact on the performance. In this example we filter Cisco Fabric Path (ethertype 0x8903) with the bpf filter not
ether proto 0x8903 as it's assumed to be a performance issue (see https://redmine.openinfosecfoundation.org/issues/
3637)

11.11. Performance Analysis 215

https://en.wikipedia.org/wiki/IEEE_802.1ad
https://en.wikipedia.org/wiki/IEEE_802.1ad
https://suricata.io/support/
https://redmine.openinfosecfoundation.org/issues/3637
https://redmine.openinfosecfoundation.org/issues/3637

Suricata User Guide, Release 7.0.0

Elephant Flows

The so called Elephant Flows or traffic spikes are quite difficult to deal with. In most cases those are big file transfers
or backup traffic and it's not feasible to decode the whole traffic. From a network security monitoring perspective it's
often enough to log the metadata of that flow and do a packet inspection at the beginning but not the whole flow.

If you can spot specific flows as described above then try to filter those. The easiest solution would be a bpf filter but
that would still result in a performance impact. Ideally you can filter such traffic even sooner on driver or NIC level (see
eBPF/XDP) or even before it reaches the system where Suricata is running. Some commercial packet broker support
such filtering where it's called Flow Shunting or Flow Slicing.

11.11.5 Rules

The Ruleset plays an important role in the detection but also in the performance capability of Suricata. Thus it's
recommended to look into the impact of enabled rules as well.

If you run into performance issues and struggle to narrow it down start with running Suricata without any rules enabled
and use the tools again that have been explained at the first part. Keep in mind that even without signatures enabled
Suricata still does most of the decoding and traffic analysis, so a fair amount of load should still be seen. If the load
is still very high and drops are seen and the hardware should be capable to deal with such traffic loads you should
deep dive if there is any specific traffic issue (see above) or report the performance issue so it can be investigated (see
https://suricata.io/join-our-community/).

Suricata also provides several specific traffic related signatures in the rules folder that could be enabled for testing to spot
specific traffic issues. Those are found the rules and you should start with decoder-events.rules, stream-events.rules
and app-layer-events.rules.

It can also be helpful to use Rule Profiling and/or Packet Profiling to find problematic rules or traffic pattern. This is
achieved by compiling Suricata with --enable-profiling but keep in mind that this has an impact on performance and
should only be used for troubleshooting.

216 Chapter 11. Performance

https://suricata.io/join-our-community/

CHAPTER
TWELVE

CONFIGURATION

12.1 Suricata.yaml

Suricata uses the Yaml format for configuration. The Suricata.yaml file included in the source code, is the example
configuration of Suricata. This document will explain each option.

At the top of the YAML-file you will find % YAML 1.1. Suricata reads the file and identifies the file as YAML.

12.1.1 Max-pending-packets

With the max-pending-packets setting you can set the number of packets you allow Suricata to process simultaneously.
This can range from one packet to tens of thousands/hundreds of thousands of packets. It is a trade of higher perfor-
mance and the use of more memory (RAM), or lower performance and less use of memory. A high number of packets
being processed results in a higher performance and the use of more memory. A low number of packets, results in
lower performance and less use of memory. Choosing a low number of packets being processed while having many
CPU's/CPU cores, can result in not making use of the whole computer-capacity. (For instance: using one core while
having three waiting for processing packets.)

max-pending-packets: 1024

12.1.2 Runmodes

By default the runmode option is disabled. With the runmodes setting you can set the runmode you would like to use.
For all runmodes available, enter --list-runmodes in your command line. For more information, see Runmodes.

runmode: autofp

12.1.3 Default-packet-size

For the max-pending-packets option, Suricata has to keep packets in memory. With the default-packet-size option, you
can set the size of the packets on your network. It is possible that bigger packets have to be processed sometimes. The
engine can still process these bigger packets, but processing it will lower the performance.

default-packet-size: 1514

217

Suricata User Guide, Release 7.0.0

12.1.4 User and group

It is possible to set the user and group to run Suricata as:

run-as:
user: suri
group: suri

12.1.5 PID File

This option sets the name of the PID file when Suricata is run in daemon mode. This file records the Suricata process
ID.

pid-file: /var/run/suricata.pid

Note: This configuration file option only sets the PID file when running in daemon mode. To force creation of a PID
file when not running in daemon mode, use the --pidfile command line option.

Also, if running more than one Suricata process, each process will need to specify a different pid-file location.

12.1.6 Action-order

All signatures have different properties. One of those is the Action property. This one determines what will happen
when a signature matches. There are four types of Action. A summary of what will happen when a signature matches
and contains one of those Actions:

1) Pass

If a signature matches and contains pass, Suricata stops scanning the packet and skips to the end of all rules (only for
the current packet). If the signature matches on a TCP connection, the entire flow will be passed but details of the flow
will still be logged.

2) Drop

This only concerns the IPS/inline mode. If the program finds a signature that matches, containing drop, it stops imme-
diately. The packet will not be sent any further. Drawback: The receiver does not receive a message of what is going
on, resulting in a time-out (certainly with TCP). Suricata generates an alert for this packet.

3) Reject

This is an active rejection of the packet. Both receiver and sender receive a reject packet. There are two types of reject
packets that will be automatically selected. If the offending packet concerns TCP, it will be a Reset-packet. For all other
protocols it will be an ICMP-error packet. Suricata also generates an alert. When in Inline/IPS mode, the offending
packet will also be dropped like with the 'drop' action.

4) Alert

If a signature matches and contains alert, the packet will be treated like any other non-threatening packet, except for
this one an alert will be generated by Suricata. Only the system administrator can notice this alert.

Inline/IPS can block network traffic in two ways. One way is by drop and the other by reject.

Rules will be loaded in the order of which they appear in files. But they will be processed in a different order. Signatures
have different priorities. The most important signatures will be scanned first. There is a possibility to change the order
of priority. The default order is: pass, drop, reject, alert.

218 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

action-order:
- pass
- drop
- reject
- alert

This means a pass rule is considered before a drop rule, a drop rule before a reject rule and so on.

12.1.7 Packet alert queue settings

It is possible to configure the size of the alerts queue that is used to append alerts triggered by each packet.

This will influence how many alerts would be perceived to have matched against a given packet. The default value is
15. If an invalid setting or no value is provided, the engine will fall back to the default.

#Define maximum number of possible alerts that can be triggered for the same
packet. Default is 15
packet-alert-max: 15

We recommend that you use the default value for this setting unless you are seeing a high number of discarded alerts
(alert_queue_overflow) - see the Discarded and Suppressed Alerts Stats section for more details.

Impact on engine behavior

Internally, the Suricata engine represents each packet with a data structure that has its own alert queue. The max size
of the queue is defined by packet-alert-max. The same rule can be triggered by the same packet multiple times. As
long as there is still space in the alert queue, those are appended.

Rules that have the noalert keyword will be checked - in case their signatures have actions that must be applied to the
Packet or Flow, then suppressed. They have no effect in the final alert queue.

Rules are queued by priority: higher priority rules may be kept instead of lower priority ones that may have been
triggered earlier, if Suricata reaches packet-alert-max for a given packet (a.k.a. packet alert queue overflow).

Packet alert queue overflow

Once the alert queue reaches its max size, we are potentially at packet alert queue overflow, so new alerts will only be
appended in case their rules have a higher priority id (this is the internal id attributed by the engine, not the signature
id).

This may happen in two different situations:
* ahigher priority rule is triggered after a lower priority one: the lower priority rule is replaced in the queue;

* alower priority rule is triggered: the rule is just discarded.

Note: This behavior does not mean that triggered drop rules would have their action ignored, in IPS mode.

12.1. Suricata.yaml 219

Suricata User Guide, Release 7.0.0

Discarded and Suppressed Alerts Stats

Both scenarios previously described will be logged as detect.alert_queue_overflow in the stats logs (in stats.log and
eve-log's stats event).

When noalert rules match, they appear in the stats logs as detect.alerts_suppressed.

Date: 4/6/2022 -- 17:18:08 (uptime: 0d, 00h 00m 00s)

Counter | TM Name | Value
detect.alert | Total | 3
detect.alert_queue_overflow | Total | 4
detect.alerts_suppressed | Total | 1

In this example from a stats.log, we read that § alerts were generated: 3 were kept in the packet queue while 4 were
discarded due to packets having reached max size for the alert queue, and 1 was suppressed due to coming from a
noalert rule.

12.1.8 Splitting configuration in multiple files

Some users might have a need or a wish to split their suricata.yaml file into separate files, this is available via the
'include’ and 'linclude' keyword. The first example is of taking the contents of the outputs section and storing them in
outputs.yaml.

outputs.yaml

- fast
enabled: yes
filename: fast.log
append: yes

suricata.yaml

outputs: !include outputs.yaml

The second scenario is where multiple sections are migrated to a different YAML file.

host_1.yaml
max-pending-packets: 2048

outputs:
- fast
enabled: yes
filename: fast.log
append: yes

220 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

suricata.yaml

include: host_1.yaml

If the same section, say outputs is later redefined after the include statement it will overwrite the included file. Therefore
any include statement at the end of the document will overwrite the already configured sections.

12.1.9 Event output

Default logging directory

In the /var/log/suricata directory, all of Suricata's output (alerts and events) will be stored.

default-log-dir: /var/log/suricata

This directory can be overridden by entering the -1 command line parameter or by changing the directory directly in
Yaml. To change it with the -1 command line parameter, enter the following:

suricata -c suricata.yaml -i eth® -1 /var/log/suricata-logs/

Stats

Engine statistics such as packet counters, memory use counters and others can be logged in several ways. A separate
text log 'stats.log' and an EVE record type 'stats' are enabled by default.

The stats have a global configuration and a per logger configuration. Here the global config is documented.

global stats configuration
stats:
enabled: yes
The interval field (in seconds) controls at what interval
the loggers are invoked.
interval: 8
Add decode events as stats.
#decoder-events: true
Decoder event prefix in stats. Has been 'decoder' before, but that leads
to missing events in the eve.stats records. See issue #2225.
#decoder-events-prefix: "decoder.event"
Add stream events as stats.
#stream-events: false

Statistics can be enabled or disabled here.

Statistics are dumped on an inferval. Setting this below 3 or 4 seconds is not useful due to how threads are synchronized
internally.

The decoder events that the decoding layer generates, can create a counter per event type. This behaviour is enabled by
default. The decoder-events option can be set to false to disable.

In 4.1.x there was a naming clash between the regular decoder counters and the decoder-event counters. This lead to
a fair amount of decoder-event counters not being shown in the EVE.stats records. To address this without breaking

12.1. Suricata.yaml 221

Suricata User Guide, Release 7.0.0

existing setups, a config option decoder-events-prefix was added to change the naming of the decoder-events from
decoder.<proto>.<event> to decoder.event.<proto>.<event>. In 5.0 this became the default. See issue 2225.

Similar to the decoder-events option, the stream-events option controls whether the stream-events are added as counters
as well. This is disabled by default.

Outputs

There are several types of output. The general structure is:

outputs:
- fast:
enabled: yes
filename: fast.log
append: yes/no

Enabling all of the logs, will result in a much lower performance and the use of more disc space, so enable only the
outputs you need.

Line based alerts log (fast.log)

This log contains alerts consisting of a single line. Example of the appearance of a single fast.log-file line:

10/05/10-10:08:59.667372 [**] [1:2009187:4] ET WEB_CLIENT ACTIVEX iDefense
COMRaider ActiveX Control Arbitrary File Deletion [**] [Classification: Web
Application Attack] [Priority: 3] {TCP} xx.xx.232.144:80 -> 192.168.1.4:56068

-fast: #The log-name.
enabled:yes #This log is enabled. Set to 'mo' to disable.
filename: fast.log #The name of the file in the default logging directory.
append: yes/no #If this option is set to yes, the last filled fast.log-file.

—will not be
#overwritten while restarting Suricata.

Eve (Extensible Event Format)

This is an JSON output for alerts and events. It allows for easy integration with 3rd party tools like logstash.

outputs:
Extensible Event Format (nicknamed EVE) event log in JSON format
- eve-log:
enabled: yes
filetype: regular #regular|syslog|unix_dgram|unix_stream|redis
filename: eve.json
Enable for multi-threaded eve.json output; output files are amended
with an identifier, e.g., eve.9.json
#threaded: false
#prefix: "@cee: " # prefix to prepend to each log entry
the following are valid when type: syslog above
#identity: "suricata"
#facility: local5

(continues on next page)

222 Chapter 12. Configuration

https://redmine.openinfosecfoundation.org/issues/2225

Suricata User Guide, Release 7.0.0

(continued from previous page)

#level: Info ## possible levels: Emergency, Alert, Critical,
Error, Warning, Notice, Info, Debug

#redis:

server: 127.0.0.1

port: 6379

async: true ## if redis replies are read asynchronously

mode: list ## possible values: list|lpush (default), rpush, channel|publish

lpush and rpush are using a Redis list. "list" is an alias for.
—1push

publish is using a Redis channel. "channel" is an alias for.
—publish

key: suricata ## key or channel to use (default to suricata)

Redis pipelining set up. This will enable to only do a query every

'batch-size' events. This should lower the latency induced by network

connection at the cost of some memory. There is no flushing implemented

so this setting as to be reserved to high traffic suricata.

pipelining:
enabled: yes ## set enable to yes to enable query pipelining
batch-size: 10 ## number of entry to keep in buffer

Include top level metadata. Default yes.
#metadata: no

types:
- alert:

payload: yes # enable dumping payload in Base64

payload-buffer-size: 4kb # max size of payload buffer to output in eve-log

payload-printable: yes # enable dumping payload in printable (lossy).
- format

packet: yes # enable dumping of packet (without stream.
—.segments)

http-body: yes # Requires metadata; enable dumping of http body.
—1n Baseb64

http-body-printable: yes # Requires metadata; enable dumping of http body.
—1in printable format

Enable the logging of tagged packets for rules using the
"tag" keyword.
tagged-packets: yes

Configure the metadata to be logged along with an

alert. The following shows the default configuration

which is used if this field is not provided or simply

set to a truthful value. Setting of this section is only
required if you wish to enable/disable specific fields.
#metadata:

Include the decoded application layer (ie. http, dns)
app-layer: true

Log the current state of the flow record.
flow: true

(continues on next page)

12.1. Suricata.yaml 223

Suricata User Guide, Release 7.0.0

(continued from previous page)

rule:
Log the metadata field from the rule in a structured
format.
metadata: true

Log the raw rule text.
raw: false

HTTP X-Forwarded-For support by adding an extra field or overwriting
the source or destination IP address (depending on flow direction)
with the one reported in the X-Forwarded-For HTTP header. This is
helpful when reviewing alerts for traffic that is being reverse
or forward proxied.
xff:
enabled: no
Two operation modes are available, "extra-data" and "overwrite".
mode: extra-data
Two proxy deployments are supported, '"reverse" and "forward". In
a "reverse" deployment the IP address used is the last one, in a
"forward" deployment the first IP address is used.
deployment: reverse
Header name where the actual IP address will be reported, if more
than one IP address is present, the last IP address will be the
one taken into consideration.
header: X-Forwarded-For

- http:

extended: yes # enable this for extended logging information

custom allows additional http fields to be included in eve-log

the example below adds three additional fields when uncommented
#custom: [Accept-Encoding, Accept-Language, Authorization]

- dns:

Use version 2 logging with the new format:

dns answers will be logged in one single event
rather than an event for each of the answers.
Without setting a version the version

will fallback to 1 for backwards compatibility.
version: 2

Enable/disable this logger. Default: enabled.
#enabled: no

Control logging of requests and responses:

- requests: enable logging of DNS queries

- responses: enable logging of DNS answers

By default both requests and responses are logged.
#requests: no

#responses: no

Format of answer logging:
- detailed: array item per answer
- grouped: answers aggregated by type

(continues on next page)

224

Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

(continued from previous page)

Default: all
#answer-format: [detailed, grouped]

Answer types to log.

Default: all

#answer-types: [a, aaaa, cname, mx, ns, ptr, txt]
- dns:

Version 1 DNS logger.

Deprecated: Will be removed by May 2022.

version: 1

enabled: no
control logging of queries and answers
default yes, no to disable
query: yes # enable logging of DNS queries
answer: yes # enable logging of DNS answers
control which RR types are logged
all enabled if custom not specified
#custom: [a, aaaa, cname, mx, ns, ptr, txt]
- tls:
extended: yes # enable this for extended logging information
output TLS transaction where the session is resumed using a
session id
#session-resumption: no
custom allows to control which tls fields that are included
in eve-log
#custom: [subject, issuer, session_resumed, serial, fingerprint, sni,.
—version, not_before, not_after, certificate, chain]
- files:
force-magic: no # force logging magic on all logged files
force logging of checksums, available hash functions are md5,
shal and sha256
#force-hash: [md5]

#- drop:

alerts: yes # log alerts that caused drops

flows: all # start or all: 'start' logs only a single drop
per flow direction. All logs each dropped pkt.
- smtp:

#extended: yes # enable this for extended logging information

this includes: bcc, message-id, subject, x_mailer, user-agent

custom fields logging from the list:

reply-to, bcc, message-id, subject, x-mailer, user-agent, received,
x-originating-ip, in-reply-to, references, importance, priority,

sensitivity, organization, content-md5, date

#custom: [received, x-mailer, x-originating-ip, relays, reply-to, bcc]
output md5 of fields: body, subject

for the body you need to set app-layer.protocols.smtp.mime.body-md5
to yes

#md5: [body, subject]

NFS logging.
- nfs

(continues on next page)

12.1. Suricata.yaml 225

Suricata User Guide, Release 7.0.0

(continued from previous page)

IKE logging.

- ike

BitTorrent DHT logging.
- bittorrent-dht

- ssh

- stats:
totals: yes # stats for all threads merged together
threads: no # per thread stats
deltas: no # include delta values

- dhcp:

DHCP logging.
enabled: yes
When extended mode is on, all DHCP messages are logged
with full detail. When extended mode is off (the
default), just enough information to map a MAC address
to an IP address is logged.
extended: no
bi-directional flows
- flow
uni-directional flows
#- netflow

An event for logging metadata, specifically pktvars when
they are set, but will also include the full metadata object.
#- metadata

For more advanced configuration options, see Eve JSON Output.

The format is documented in Eve JSON Format.

TLS parameters and certificates logging (tls.log)
The TLS handshake parameters can be logged in a line based log as well. By default, the logfile is s.log in the suricata
log directory. See Custom TLS logging for details about the configuration and customization of the log format.

Furthermore there is an output module to store TLS certificate files to disk. This is similar to File-store (File Extraction),
but for TLS certificates.

Example:

output module to store certificates chain to disk
- tls-store:
enabled: yes
#certs-log-dir: certs # directory to store the certificates files

226 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

A line based log of HTTP requests (http.log)

This log keeps track of all HTTP-traffic events. It contains the HTTP request, hostname, URI and the User-Agent.
This information will be stored in the http.log (default name, in the suricata log directory). This logging can also be
performed through the use of the Eve-log capability.

Example of a HTTP-log line with non-extended logging:

07/01/2014-04:20:14.338309 vg.no [**] / [**] Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_9_
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.114 Safari/537.36 [**]
192.168.1.6:64685 -> 195.88.54.16:80

Example of a HTTP-log line with extended logging:

07/01/2014-04:21:06.994705 vg.no [**] / [**] Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_
‘4}2)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.114 Safari/537.36 [**] <no.
—referer> [**]

GET [**] HTTP/1.1 [**] 301 => http://www.vg.no/ [**] 239 bytes [**] 192.168.1.6:64726 ->_.
—195.88.54.16:80

- http-log: #The log-name.
enabled: yes #This log is enabled. Set 'no' to disable.
filename: http.log #The name of the file in the default logging directory.
append: yes/no #If this option is set to yes, the last filled http.log-

—file will not be
overwritten while restarting Suricata.
extended: yes # If set to yes more information is written about the.
—event.

Packet log (pcap-log)

With the pcap-log option you can save all packets, that are registered by Suricata, in a log file named _log.pcap_.
This way, you can take a look at all packets whenever you want. In the normal mode a pcap file is created in the
default-log-dir. It can also be created elsewhere if a absolute path is set in the yaml-file.

The file that is saved in example the default -log-dir /var/log/suricata, can be be opened with every program which
supports the pcap file format. This can be Wireshark, TCPdump, Suricata, Snort and many others.

The pcap-log option can be enabled and disabled.

There is a size limit for the pcap-log file that can be set. The default limit is 32 MB. If the log-file reaches this limit,
the file will be rotated and a new one will be created. The pcap-log option has an extra functionality for "Sguil":http:
/Isguil.sourceforge.net/ that can be enabled in the 'mode’ option. In the sguil mode the "sguil_base_dir" indicates the
base directory. In this base dir the pcaps are created in a Sguil-specific directory structure that is based on the day:

$sguil_base_dir/YYYY-MM-DD/$filename.<timestamp>

If you would like to use Suricata with Sguil, do not forget to enable (and if necessary modify) the base dir in the
suricata.yaml file. Remember that in the 'normal' mode, the file will be saved in default-log-dir or in the absolute path
(if set).

The pcap files can be compressed before being written to disk by setting the compression option to 1z4. This option is
incompatible with sguil mode. Note: On Windows, this option increases disk I/O instead of reducing it. When using

12.1. Suricata.yaml 227

http://sguil.sourceforge.net/
http://sguil.sourceforge.net/

Suricata User Guide, Release 7.0.0

1z4 compression, you can enable checksums using the 1z4-checksum option, and you can set the compression level
1z4-level to a value between 0 and 16, where higher levels result in higher compression.

By default all packets are logged except:
¢ TCP streams beyond stream.reassembly.depth
* encrypted streams after the key exchange

It is possible to do conditional pcap logging by using the conditional option in the pcap-log section. By default the
variable is set to all so all packets are logged. If the variable is set to alerts then only the flow with alerts will be logged.
If the variable is set to fag then only packets tagged by signatures using the tag keyword will be logged to the pcap file.
Please note that if alerts or tag is used, then in the case of TCP session, Suricata will use available information from
the streaming engine to log data that have triggered the alert.

- pcap-log:
enabled: yes
filename: log.pcap

Limit in MB.
limit: 32

mode: sguil # "normal" (default) or sguil.
sguil_base_dir: /nsm_data/
conditional: alerts

Verbose Alerts Log (alert-debug.log)

This is a log type that gives supplementary information about an alert. It is particularly convenient for people who
investigate false positives and who write signatures. However, it lowers the performance because of the amount of
information it has to store.

- alert-debug: #The log-name.
enabled: no #This log is not enabled. Set 'yes' to enable.
filename: alert-debug.log #The name of the file in the default logging directory.
append: yes/no #If this option is set to yes, the last filled fast.log-

—file will not be
overwritten while restarting Suricata.

Stats

In stats you can set the options for stats.log. When enabling stats.log you can set the amount of time in seconds after
which you want the output-data to be written to the log file.

- stats:
enabled: yes #By default, the stats-option is enabled
filename: stats.log #The log-name. Combined with the default logging.
—directory
#(default-log-dir) it will result in /var/log/suricata/
- Stats.log.
#This directory can be overruled with a absolute path. (A
#directory starting with /).
append: yes/no #If this option is set to yes, the last filled fast.log-

(continues on next page)

228 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

(continued from previous page)

—file will not be
#overwritten while restarting Suricata.

The interval and several other options depend on the global stats section as described above.

Syslog

With this option it is possible to send all alert and event output to syslog.

- syslog: #This is a output-module to direct log-output to several.,
—directions.

enabled: no #The use of this output-module is not enabled.

facility: local5s #In this option you can set a syslog facility.

level: Info #In this option you can set the level of output. The,

—possible levels are:
#Emergency, Alert, Critical, Error, Warning, Notice,.
—Info and Debug.

File-store (File Extraction)

The file-store output enables storing of extracted files to disk and configures where they are stored.

The following shows the configuration options for version 2 of the file-store output.

- file-store:
This configures version 2 of the file-store.
version: 2

enabled: no

Set the directory for the filestore. If the path is not
absolute will be be relative to the default-log-dir.
#dir: filestore

Write out a fileinfo record for each occurrence of a

file. Disabled by default as each occurrence is already logged
as a fileinfo record to the main eve-log.

#write-fileinfo: yes

Force storing of all files. Default: no.
#force-filestore: yes

Override the global stream-depth for sessions in which we want
to perform file extraction. Set to 0 for unlimited; otherwise,
must be greater than the global stream-depth value to be used.
#stream-depth: 0

Uncomment the following variable to define how many files can
remain open for filestore by Suricata. Default value is 0 which
means files get closed after each write

#max-open-files: 1000

(continues on next page)

12.1. Suricata.yaml 229

Suricata User Guide, Release 7.0.0

(continued from previous page)

Force logging of checksums, available hash functions are md5,
shal and sha256. Note that SHA256 is automatically forced by
the use of this output module as it uses the SHA256 as the

file naming scheme.

#force-hash: [shal, md5]

12.1.10 Detection engine

Inspection configuration

The detection-engine builds internal groups of signatures. Suricata loads signatures, with which the network traffic
will be compared. The fact is, that many rules certainly will not be necessary. (For instance: if there appears a packet
with the UDP-protocol, all signatures for the TCP-protocol won't be needed.) For that reason, all signatures will be
divided in groups. However, a distribution containing many groups will make use of a lot of memory. Not every type
of signature gets its own group. There is a possibility that different signatures with several properties in common, will
be placed together in a group. The quantity of groups will determine the balance between memory and performance.
A small amount of groups will lower the performance yet uses little memory. The opposite counts for a higher amount
of groups. The engine allows you to manage the balance between memory and performance. To manage this, (by
determining the amount of groups) there are several general options: high for good performance and more use of
memory, low for low performance and little use of memory. The option medium is the balance between performance
and memory usage. This is the default setting. The option custom is for advanced users. This option has values which
can be managed by the user.

detect:
profile: medium
custom-values:
toclient-groups: 2
toserver-groups: 25
sgh-mpm-context: auto
inspection-recursion-limit: 3000

At all of these options, you can add (or change) a value. Most signatures have the adjustment to focus on one direction,
meaning focusing exclusively on the server, or exclusively on the client.

If you take a look at example 4, the Detection-engine grouping tree, you see it has many branches. At the end of each
branch, there is actually a 'sig group head'. Within that sig group head there is a container which contains a list with
signatures that are significant for that specific group/that specific end of the branch. Also within the sig group head the
settings for Multi-Pattern-Matcher (MPM) can be found: the MPM-context.

As will be described again at the part 'Pattern matching settings', there are several MPM-algorithms of which can be
chosen from. Because every sig group head has its own MPM-context, some algorithms use a lot of memory. For
that reason there is the option sgh-mpm-context to set whether the groups share one MPM-context, or to set that every
group has its own MPM-context.

For setting the option sgh-mpm-context, you can choose from auto, full or single. The default setting is 'auto’, meaning
Suricata selects full or single based on the algorithm you use. 'Full' means that every group has its own MPM-context,
and 'single’ that all groups share one MPM-context. The two algorithms ac and ac-gfbs are new in 1.03. These algo-
rithms use a single MPM-context if the Sgh-MPM-context setting is 'auto’. The rest of the algorithms use full in that
case.

The inspection-recursion-limit option has to mitigate that possible bugs in Suricata cause big problems. Often Suricata
has to deal with complicated issues. It could end up in an 'endless loop' due to a bug, meaning it will repeat its actions

230 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

over and over again. With the option inspection-recursion-limit you can limit this action.

Example 4 Detection-engine grouping tree

src-group | dst-group | Sp-group | dp-group |signatures

dp
e .
sp e =
A]

dst ;p 5 \
o
/ \\\\‘ dp
S ™ dst

'\.\-‘ sp

toclient | .- X
e

dst
Protocols \\

TCP
Packet | —— \\'\ src
— A
1
loserver
src Stands for source IP-address.
dst Stands for destination IP-address.
Sp Stands for source port.
dp Stands for destination port.

Example 5 Detail grouping tree

12.1. Suricata.yaml 231

Suricata User Guide, Release 7.0.0

Y-
BT ol |
¥
T
- = 5G| Y o

Prikessla

Sig group head

-Signatures
G=% -MPM cix

dp

Prefilter Engines

The concept of prefiltering is that there are far too many rules to inspect individually. The approach prefilter takes is
that from each rule one condition is added to prefilter, which is then checked in one step. The most common example
is MPM (also known as fast_pattern). This takes a single pattern per rule and adds it to the MPM. Only for those rules
that have at least one pattern match in the MPM stage, individual inspection is performed.

Next to MPM, other types of keywords support prefiltering. ICMP itype, icode, icmp_seq and icmp_id for example.
TCP window, IP TTL are other examples.

For a full list of keywords that support prefilter, see:

suricata --list-keywords=all

Suricata can automatically select prefilter options, or it can be set manually.

detect:
prefilter:
default: mpm

232 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

By default, only MPM/fast_pattern is used.
The prefilter engines for other non-MPM keywords can then be enabled in specific rules by using the 'prefilter' keyword.

E.g.

alert ip any any -> any any (ttl:123; prefilter; sid:1;)

To let Suricata make these decisions set default to 'auto':

detect:
prefilter:
default: auto

Pattern matcher settings

The multi-pattern-matcher (MPM) is a part of the detection engine within Suricata that searches for multiple patterns at
once. Often, signatures have one or more patterns. Of each signature, one pattern is used by the multi-pattern-matcher.
That way Suricata can exclude many signatures from being examined, because a signature can only match when all its
patterns match.

These are the proceedings:
1) A packet comes in.
2) The packed will be analyzed by the Multi-pattern-matcher in search of patterns that match.
3) All patterns that match, will be further processed by Suricata (signatures).

Example 8 Multi-pattern-matcher

Signatures

Suricata offers various implementations of different multi-pattern-matcher algorithm's. These can be found below.

To set the multi-pattern-matcher algorithm:

mpm-algo: ac

12.1. Suricata.yaml 233

Suricata User Guide, Release 7.0.0

After 'mpm-algo’, you can enter one of the following algorithms: ac, hs and ac-ks.

On x86_64 hs (Hyperscan) should be used for best performance.

12.1.11 Threading

Suricata is multi-threaded. Suricata uses multiple CPUs/CPU cores so it can process a lot of network packets simulta-
neously. (In a single-core engine, the packets will be processed one at a time.)

There are four thread-modules: Packet acquisition, decode and stream application layer, detection, and outputs.
The packet acquisition module reads packets from the network.

The decode module decodes the packets and the stream application application layer has three tasks:

First: it performs stream-tracking, meaning it is making sure all steps will be taken to.
—make a correct network-connection.

Second: TCP-network traffic comes in as packets. The Stream-Assembly engine reconstructs.
—the original stream.

Finally: the application layer will be inspected. HTTP and DCERPC will be analyzed.

The detection threads will compare signatures. There can be several detection threads so they can operate simulta-
neously.

In Outputs all alerts and events will be processed.

Example 6 Threading
1 2 3 4
Detect
_ Y
'ac
; Packel
= . acouisiti —— | Oulputs
__,\f
Packet acquisition: Reads packets from the network
Decode: Decodes packets.
Stream app. Layer: Performs stream-tracking and reassembly.
Detect: Compares signatures.
Outputs: Processes all events and alerts.

Most computers have multiple CPU's/ CPU cores. By default the operating system determines which core works on
which thread. When a core is already occupied, another one will be designated to work on the thread. So, which core
works on which thread, can differ from time to time.

There is an option within threading:

234 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

set-cpu-affinity: no

With this option you can cause Suricata setting fixed cores for every thread. In that case 1, 2 and 4 are at core O (zero).
Each core has its own detect thread. The detect thread running on core 0 has a lower priority than the other threads
running on core 0. If these other cores are to occupied, the detect thread on core 0 has not much packets to process.
The detect threads running on other cores will process more packets. This is only the case after setting the option to

[1

yes'.

Example 7 Balancing workload

CPU/CPU core-threads set_cpu_affinity: yes
Corg 0 PAC DECCODE STREAM DETECT- QUTPUT
L 1 DETECT
2 DETECT
3 DETECT
set_cpu_affinity: no
Example
Core PAC DETECT
DECODE

STREAM DETECT X2
DETECT QUTPUT

L [PD = |

You can set the detect-thread-ratio:

detect-thread-ratio: 1.5

The detect thread-ratio will determine the amount of detect threads. By default it will be 1.5 x the amount of CPU's/CPU
cores present at your computer. This will result in having more detection threads then CPU's/ CPU cores. Meaning you
are oversubscribing the amount of cores. This may be convenient at times when there have to be waited for a detection
thread. The remaining detection thread can become active.

You can alter the per-thread stack-size if the default provided by your build system is too small. The default value is
provided by your build system; we suggest setting the value to 8MB if the default value is too small.

stack-size: 8MB

In the option 'cpu affinity’ you can set which CPU's/cores work on which thread. In this option there are several sets of
threads. The management-, receive-, worker- and verdict-set. These are fixed names and can not be changed. For each
set there are several options: cpu, mode, and prio. In the option 'cpu’ you can set the numbers of the CPU's/cores which
will run the threads from that set. You can set this option to 'all’, use a range (0-3) or a comma separated list (0,1). The
option 'mode' can be set to 'balanced' or 'exclusive'. When set to 'balanced’, the individual threads can be processed by
all cores set in the option 'cpu’. If the option 'mode’' is set to 'exclusive', there will be fixed cores for each thread. As

12.1. Suricata.yaml 235

Suricata User Guide, Release 7.0.0

mentioned before, threads can have different priority's. In the option 'prio' you can set a priority for each thread. This
priority can be low, medium, high or you can set the priority to 'default'. If you do not set a priority for a CPU, than the
settings in 'default' will count. By default Suricata creates one 'detect' (worker) thread per available CPU/CPU core.

cpu-affinity:
- management-cpu-set:
cpu: [®] # include only these cpus in affinity settings
- receive-cpu-set:
cpu: [®] # include only these cpus in affinity settings
- worker-cpu-set:
cpu: ["all"]
mode: "exclusive"
Use explicitly 3 threads and don't compute number by using
detect-thread-ratio variable:
threads: 3

prio:
low: [0]
medium: ["1-2"]
high: [3 1]

default: "medium"
- verdict-cpu-set:
cpu: [0]
prio:
default: "high"

Relevant cpu-affinity settings for IDS/IPS modes
IDS mode

Runmode AutoFp:

management-cpu-set - used for management (example - flow.managers, flow.recyclers)
receive-cpu-set - used for receive and decode
worker-cpu-set - used for streamtcp,detect,output(logging),reject

Rumode Workers:

management-cpu-set - used for management (example - flow.managers, flow.recyclers)
worker-cpu-set - used for receive,streamtcp,decode,detect,output(logging),respond/reject

IPS mode

Runmode AutoFp:

management-cpu-set - used for management (example - flow.managers, flow.recyclers)
receive-cpu-set - used for receive and decode

worker-cpu-set - used for streamtcp,detect,output(logging)

verdict-cpu-set - used for verdict and respond/reject

Runmode Workers:

236 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

management-cpu-set - used for management (example - flow.managers, flow.recyclers)
worker-cpu-set - used for receive,streamtcp,decode,detect,output(logging),respond/reject,
— verdict

12.1.12 IP Defrag

Occasionally network packets appear fragmented. On some networks it occurs more often than on others. Fragmented
packets exist of many parts. Before Suricata is able to inspect these kind of packets accurately, the packets have to be
reconstructed. This will be done by a component of Suricata; the defragment-engine. After a fragmented packet is
reconstructed by the defragment-engine, the engine sends on the reassembled packet to rest of Suricata.

At the moment Suricata receives a fragment of a packet, it keeps in memory that other fragments of that packet will
appear soon to complete the packet. However, there is a possibility that one of the fragments does not appear. To
prevent Suricata for keeping waiting for that packet (thereby using memory) there is a timespan after which Suricata
discards the fragments (timeout). This occurs by default after 60 seconds.

In IPS mode, it is possible to tell the engine what to do in case the memcap for the defrag engine is reached: "drop-

packet", "pass-packet", or "ignore" (default behavior).

defrag:
memcap: 32mb
memcap-policy: ignore # in IPS mode, what to do if memcap is reached
hash-size: 65536
trackers: 65535 # number of defragmented flows to follow
max-frags: 65535 # number of fragments do keep (higher than trackers)
prealloc: yes
timeout: 60

12.1.13 Flow and Stream handling
Flow Settings

Within Suricata, Flows are very important. They play a big part in the way Suricata organizes data internally. A flow
is a bit similar to a connection, except a flow is more general. All packets having the same Tuple (protocol, source IP,
destination IP, source-port, destination-port), belong to the same flow. Packets belonging to a flow are connected to it
internally.

Example 9 Flow

12.1. Suricata.yaml 237

Suricata User Guide, Release 7.0.0

’J_" TGP Flow

-
SITHEAM
n A = B Connection/
STREAM SE55I0N
-
»-'—I_" LIDP Flow
T
JA B
N
Example 10 Tuple
Flow
r
PACKET

I—— Same Tuple

Keeping track of all these flows, uses memory. The more flows, the more memory it will cost.

To keep control over memory usage, there are several options:

238 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

The option memcap for setting the maximum amount of bytes the flow-engine will use, hash-size for setting the size
of the hash-table and prealloc for the following:

For packets not yet belonging to a flow, Suricata creates a new flow. This is a relative expensive action.
The risk coming with it, is that attackers /hackers can a attack the engine system at this part. When they
make sure a computer gets a lot of packets with different tuples, the engine has to make a lot of new flows.
This way, an attacker could flood the system. To mitigate the engine from being overloaded, this option
instructs Suricata to keep a number of flows ready in memory. This way Suricata is less vulnerable to these
kind of attacks.

The flow-engine has a management thread that operates independent from the packet processing. This thread is called
the flow-manager. This thread ensures that wherever possible and within the memcap. There will be 10000 flows
prepared.

In IPS mode, a memcap-policy exception policy can be set, telling Suricata what to do in case memcap is hit: 'drop-
packet', 'pass-packet’, 'reject’, or 'ignore'.

flow:
memcap: 33554432 #The maximum amount of bytes the flow-engine will make.,
—use of.
memcap-policy: bypass #How to handle the flow if memcap is reached (IPS mode)
hash_size: 65536 #Flows will be organized in a hash-table. With this.

—option you can set the
#size of the hash-table.
Prealloc: 10000 #The amount of flows Suricata has to keep ready in.
< memory .

At the point the memcap will still be reached, despite prealloc, the flow-engine goes into the emergency-mode. In this
mode, the engine will make use of shorter time-outs. It lets flows expire in a more aggressive manner so there will be
more space for new Flows.

There are two options: emergency_recovery and prune_flows. The emergency recovery is set on 30. This is the
percentage of prealloc'd flows after which the flow-engine will be back to normal (when 30 percent of the 10000 flows
is completed).

If during the emergency-mode, the aggressive time-outs do not have the desired result, this option is the
final resort. It ends some flows even if they have not reached their time-outs yet. The prune-flows option
shows how many flows there will be terminated at each time a new flow is set up.

emergency_recovery: 30 #Percentage of 1000 prealloc'd flows.
prune_flows: 5 #Amount of flows being terminated during the.
—,emergency mode.

Flow Time-Outs

The amount of time Suricata keeps a flow in memory is determined by the Flow time-out.

There are different states in which a flow can be. Suricata distinguishes three flow-states for TCP and two for UDP. For
TCP, these are: New, Established and Closed,for UDP only new and established. For each of these states Suricata can
employ different timeouts.

The state new in a TCP-flow, means the period during the three way handshake. The state established is the state when
the three way handshake is completed. The state closed in the TCP-flow: there a several ways to end a flow. This is by
means of Reset or the Four-way FIN handshake.

New in a UDP-flow: the state in which packets are send from only one direction.

Established in a UDP-flow: packets are send from both directions.

12.1. Suricata.yaml 239

Suricata User Guide, Release 7.0.0

In the example configuration the are settings for each protocol. TCP, UDP, ICMP and default (all other protocols).

flow-timeouts:

default:
new: 30 #Time-out in seconds after the last activity in this.
—flow in a New state.
established: 300 #Time-out in seconds after the last activity in this,
—flow in a Established
#state.
emergency_new: 10 #Time-out in seconds after the last activity in this.

—flow in a New state
#during the emergency mode.
emergency_established: 100 #Time-out in seconds after the last activity in this.
—flow in a Established
#state in the emergency mode.
tcp:
new: 60
established: 3600
closed: 120
emergency_new: 10
emergency_established: 300
emergency_closed: 20
udp:
new: 30
established: 300
emergency_new: 10
emergency_established: 100
icmp:
new: 30
established: 300
emergency_new: 10
emergency_established: 100

Stream-engine

The Stream-engine keeps track of the TCP-connections. The engine exists of two parts: The stream tracking- and the
reassembly-engine.

The stream-tracking engine monitors the state of a connection. The reassembly-engine reconstructs the flow as it used
to be, so it will be recognized by Suricata.

The stream-engine has two memcaps that can be set. One for the stream-tracking-engine and one for the reassembly-
engine. For both cases, in IPS mode, an exception policy (memcap-policy) can be set, telling Suricata what to do in
case memcap is hit: 'drop-flow’, 'drop-packet’, 'pass-flow', 'pass-packet', 'bypass', 'reject’, or ignore'.

The stream-tracking-engine keeps information of the flow in memory. Information about the state, TCP-sequence-

numbers and the TCP window. For keeping this information, it can make use of the capacity the memcap allows.

TCP packets have a so-called checksum. This is an internal code which makes it possible to see if a packet has arrived
in a good state. The stream-engine will not process packets with a wrong checksum. This option can be set off by
entering 'no' instead of 'yes'.

240 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

stream:
memcap: 64mb # Max memory usage (in bytes) for TCP session tracking
memcap-policy: ignore # In IPS mode, call memcap policy if memcap is reached
checksum_validation: yes # Validate packet checksum, reject packets with invalid.
—checksums.

To mitigate Suricata from being overloaded by fast session creation, the option prealloc_sessions instructs Suricata to
keep a number of sessions ready in memory.

A TCP-session starts with the three-way-handshake. After that, data can be sent and received. A session can last a long
time. It can happen that Suricata will be started after a few TCP sessions have already been started. This way, Suricata
misses the original setup of those sessions. This setup always includes a lot of information. If you want Suricata to
check the stream from that time on, you can do so by setting the option 'midstream' to 'true’. The default setting is 'false’.
In IPS mode, it is possible to define a 'midstream-policy', indicating whether Suricata should drop-flow, drop-packet,
pass-flow, pass-packet, reject, or bypass a midstream flow. The default is ignore. Normally Suricata is able to see
all packets of a connection. Some networks make it more complicated though. Some of the network-traffic follows a
different route than the other part, in other words: the traffic goes asynchronous. To make sure Suricata will check the
one part it does see, instead of getting confused, the option 'async-oneside' is brought to life. By default the option is
set to 'false’.

Suricata inspects content in the normal/IDS mode in chunks. In the inline/IPS mode it does that on the sliding window
way (see example ..) In the case Suricata is set in inline mode, it has to inspect packets immediately before sending it to
the receiver. This way Suricata is able to drop a packet directly if needed.(see example ...) It is important for Suricata
to note which operating system it is dealing with, because operating systems differ in the way they process anomalies
in streams. See Host-os-policy.

prealloc_sessions: 32768
midstream: false
midstream-policy: drop-flow
async_oneside: false
inline: no

drop-invalid: yes

bypass: no

32k sessions prealloc'd

do not allow midstream session pickups

in IPS mode, drop flows that start midstream
do not enable async stream handling

stream inline mode

drop invalid packets

oW R KR W R

The drop-invalid option can be set to no to avoid blocking packets that are seen invalid by the streaming engine.
This can be useful to cover some weird cases seen in some layer 2 IPS setup.

The bypass option activates 'bypass' for a flow/session when either side of the session reaches its depth.

Warning: bypass can lead to missing important traffic. Use with care.

Example 11 Normal/IDS mode

Suricata inspects traffic in chunks.

12.1. Suricata.yaml 241

Suricata User Guide, Release 7.0.0

PuulkL'l 1 Packel 2

|
Packet 3
[
A
c
K

'

Example 12 Inline/IPS Sliding Window

L |

A

Suricata inspects traffic in a sliding window manner.

ABC DEF GHI
‘ ABC I ‘ ABCDEF I DEFGHI

Sliding window = 6

-}

Example 13 Normal/IDS (reassembly on ACK'D data)

242 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

7/~ Packet 1 Packet 2 Packet 3

' | | | -
¥ GET /a HTTP/1.0 \Anrin
Q
s
t

Packet 4
-l

I
A
C
K

=0 T T oD Y wo !
A
:—""j\\-\"-

GET /fa HTTP/1.0 \rin\r\n |:> HTTP parser

Example 14 Inline/IPS (reassembly on UNACK'D data)

Packet 1 Packet 2 Packet 3 Packet 4

[[I [Ll
‘GETI&I HTTPﬂ.DI \ANVAN GET b HE.L'EE-} GET /a

HTTP parser HTTP parser HTTP parser

The reassembly-engine has to keep data segments in memory in order to be able to reconstruct a stream. To avoid
resource starvation a memcap is used to limit the memory used. In IPS mode, an exception policy (memcap-policy) can
be set, telling Suricata what to do in case memcap is hit: 'drop-flow', 'drop-packet’, 'pass-flow’, 'pass-packet’, 'bypass’,
'reject’, or 'ignore’'.

Reassembling a stream is an expensive operation. With the option depth you can control how far into a stream re-
assembly is done. By default this is IMB. This setting can be overridden per stream by the protocol parsers that do file

12.1. Suricata.yaml 243

Suricata User Guide, Release 7.0.0

extraction.

Inspection of reassembled data is done in chunks. The size of these chunks is set with toserver_chunk_size and
toclient_chunk_size. To avoid making the borders predictable, the sizes can be varied by adding in a random
factor.

reassembly:
memcap: 256mb # Memory reserved for stream data reconstruction (in bytes)
memcap-policy: ignore # What to do when memcap for reassembly is hit
depth: 1mb # The depth of the reassembling.

toserver_chunk_size: 2560 # inspect raw stream in chunks of at least this size
toclient_chunk_size: 2560 # inspect raw stream in chunks of at least
randomize-chunk-size: yes

#randomize-chunk-range: 10

'Raw' reassembly is done for inspection by simple content, pcre keywords use and other payload inspection not done
on specific protocol buffers like http_uri. This type of reassembly can be turned off:

reassembly:
raw: ho

Incoming segments are stored in a list in the stream. To avoid constant memory allocations a per-thread pool is used.

reassembly:
segment-prealloc: 2048 # pre-alloc 2k segments per thread

Resending different data on the same sequence number is a way to confuse network inspection.

reassembly:
check-overlap-different-data: true

Example 15 Stream reassembly

244 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

Stream Reassembly

Signature: EVIL

P ——

nnaction

Reassembled Stream:

Packet 1 Packet 2 Packet 4 Packet 6 .
| [[
Packet 3 Packet & Packet 7

toserver_chunk_size: 10

12.1. Suricata.yaml 245

Suricata User Guide, Release 7.0.0

12.1.14 Application Layer Parsers

The app-layer section holds application layer specific configurations.

In IPS mode, a global exception policy accessed via the error-policy setting can be defined to indicate what the

engine should do in case it encounters an app-layer error. Possible values are "drop-flow", "pass-flow", "bypass",

non non

"drop-packet", "pass-packet", "reject" or "ignore" (which maintains the default behavior).

Each supported protocol has a dedicated subsection under protocols.

Asn1_max_frames (new in 1.0.3 and 1.1)

Asnl (Abstract Syntax One) is a standard notation to structure and describe data.

Within Asnl_max_frames there are several frames. To protect itself, Suricata will inspect a maximum of 256. You can
set this amount differently if wanted.

Application layer protocols such as X.400 electronic mail, X.500 and LDAP directory services, H.323 (VoIP), BACnet
and SNMP, use ASN.1 to describe the protocol data units (PDUs) they exchange. It is also extensively used in the
Access and Non-Access Strata of UMTS.

Limit for the maximum number of asnl frames to decode (default 256):

asnl_max_frames: 256

FTP

The FTP application layer parser is enabled by default and uses dynamic protocol detection.

By default, FTP control channel commands and responses are limited to 4096 bytes, but this value can be changed.
When a command request or response exceeds the line length limit, the stored data will be truncated, however the parser
will continue to watch for the end of line and acquire the next command. Commands that are truncated will be noted
in the eve log file with the fields command_truncated or reply_truncated. Please note that this affects the control
messages only, not FTP data (file transfers).

ftp:
enabled: yes
#memcap: 64mb

Maximum line length for control messages before they will be truncated.
#max-line-length: 4kb

Configure HTTP (libhtp)

The library Libhtp is being used by Suricata to parse HTTP-sessions.

While processing HTTP-traffic, Suricata has to deal with different kind of servers which each process anomalies in
HTTP-traffic differently. The most common web-server is Apache. This is an open source web-server program.

Besides Apache, IIS (Internet Information Services/Server) a web-server program of Microsoft is also well-known.

Like with host-os-policy, it is important for Suricata to know which IP-address/network-address is used by which server.
In Libhtp this assigning of web-servers to IP-and network addresses is called personality.

Currently Available Personalities:

e Minimal

246 Chapter 12. Configuration

http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One

Suricata User Guide, Release 7.0.0

* Generic
e IDS (default)
*« IIS 40
* IIS_. 5.0
« IIS_5_1
* IIS_ 6.0
*« IIS 7.0
* IIS_7.5
* Apache
* Apache 2 2

You can assign names to each block of settings. Which in this case is -apache and -iis7. Under these names you can

set IP-addresses, network-addresses the personality and a set of features.

The version-specific personalities know exactly how web servers behave, and emulate that. The IDS personality would
try to implement a best-effort approach that would work reasonably well in the cases where you do not know the

specifics.

The default configuration also applies to every IP-address for which no specific setting is available.

HTTP request bodies are often big, so they take a lot of time to process which has a significant impact on the perfor-

mance. With the option 'request-body-limit' you can set the limit (in bytes)
Setting it to 0 will inspect all of the body.

The same goes for HTTP response bodies.

of the client-body that will be inspected.

libhtp:

default-config:
personality: IDS
request-body-limit: 3072
response-body-limit: 3072

server-config:
- apache:
address: [192.168.1.0/24, 127.0.0.0/8, "::1"]
personality: Apache_2_2
request-body-limit: 0
response-body-limit: 0

- iis7:
address:
- 192.168.0.0/24
- 192.168.10.0/24
personality: IIS_7_0
request-body-limit: 4096
response-body-limit: 8192

Suricata makes available the whole set of libhtp customisations for its users.

You can now use these parameters in the conf to customise suricata's use of libhtp.

12.1. Suricata.yaml

247

Suricata User Guide, Release 7.0.0

Configures whether backslash characters are treated as path segment
separators. They are not on Unix systems, but are on Windows systems.
If this setting is enabled, a path such as "/one\two/three" will be
converted to "/one/two/three". Accepted values - yes, no.
#path-convert-backslash-separators: yes

Configures whether input data will be converted to lowercase.
#path-convert-lowercase: yes

Configures how the server reacts to encoded NUL bytes.
#path-nul-encoded-terminates: no

Configures how the server reacts to raw NUL bytes.
#path-nul-raw-terminates: no

Configures whether consecutive path segment separators will be
compressed. When enabled, a path such as "/one//two" will be normalized
to "/one/two". The backslash_separators and decode_separators
parameters are used before compression takes place. For example, if
backslash_separators and decode_separators are both enabled, the path
"/one\\/two\/%5cthree/%2f//four" will be converted to
"/one/two/three/four". Accepted values - yes, no.
#path-separators-compress: yes

O KR W W W R

Configures whether encoded path segment separators will be decoded.
Apache does not do this, but IIS does. If enabled, a path such as
"/one%2ftwo" will be normalized to "/one/two". If the

backslash_separators option is also enabled, encoded backslash

characters will be converted too (and subsequently normalized to

forward slashes). Accepted values - yes, no.
#path-separators-decode: yes

Configures whether %u-encoded sequences in path will be decoded. Such
sequences will be treated as invalid URL encoding if decoding is not
desireable. Accepted values - yes, no.

#path-u-encoding-decode: yes

Configures how server reacts to invalid encoding in path. Accepted
values - preserve_percent, remove_percent, decode_invalid, status_400
#path-url-encoding-invalid-handling: preserve_percent

Controls whether the data should be treated as UTF-8 and converted
to a single-byte stream using best-fit mapping
#path-utf8-convert-bestfit:yes

Sets the replacement character that will be used to in the lossy
best-fit mapping from Unicode characters into single-byte streams.
The question mark is the default replacement character.
#path-bestfit-replacement-char: ?

Configures whether plus characters are converted to spaces
when decoding URL-encoded strings.
#query-plusspace-decode: yes

(continues on next page)

248 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

(continued from previous page)

response-body-decompress-layer-limit:

Limit to how many layers of compression will be
decompressed. Defaults to 2.

uri-include-all: Include all parts of the URI. By default the

'scheme', username/password, hostname and port

are excluded.

meta-field-limit: Hard size limit for request and response size
limits.

inspection limits
request-body-minimal-inspect-size: 32kb
request-body-inspect-window: 4Kkb
response-body-minimal-inspect-size: 40kb
response-body-inspect-window: 16kb

auto will use http-body-inline mode in IPS mode, yes or no set it statically
http-body-inline: auto

Decompress SWF files.
2 types: 'deflate', 'lzma', 'both' will decompress deflate and lzma
compress-depth:
Specifies the maximum amount of data to decompress,
set 0 for unlimited.
decompress-depth:
Specifies the maximum amount of decompressed data to obtain,
set 0 for unlimited.
swf-decompression:

enabled: yes

type: both

compress-depth: 0

decompress-depth: 0

HFHOoR R OH W W R R

Take a random value for inspection sizes around the specified value.
This lower the risk of some evasion technics but could lead

detection change between runs. It is set to 'ves' by default.
#randomize-inspection-sizes: yes

If randomize-inspection-sizes is active, the value of various

inspection size will be chosen in the [1 - range%, 1 + range%]

range

Default value of randomize-inspection-range is 10.
#randomize-inspection-range: 10

Can enable LZMA decompression

#lzma-enabled: false

Memory limit usage for LZMA decompression dictionary

Data is decompressed until dictionary reaches this size
#lzma-memlimit: 1 Mb

Maximum decompressed size with a compression ratio

above 2048 (only reachable by LZMA)

(continues on next page)

12.1. Suricata.yaml 249

Suricata User Guide, Release 7.0.0

(continued from previous page)

#compression-bomb-1imit: 1 Mb
Maximum time spent decompressing a single transaction in usec
#decompression-time-limit: 100000

Other parameters are customizable from Suricata.

double-decode-path: Double decode path section of the URI
double-decode-query: Double decode query section of the URI

decompression-time-limit

decompression-time-limit was implemented to avoid DOS by resource exhaustion on inputs such as decompression
bombs (found by fuzzing). The lower the limit, the better the protection against DOS is, but this may also lead to false
positives. In case the time limit is reached, the app-layer event http.compression_bomb is set (this event can also
set from other conditions). This can happen on slow configurations (hardware, ASAN, etc...)

Configure SMB

The SMB parser will parse version 1, 2 and 3 of the SMB protocol over TCP.
To enable the parser add the following to the app-1layer section of the YAML.

smb:
enabled: yes
detection-ports:
dp: 139, 445

The parser uses pattern based protocol detection and will fallback to probing parsers if the pattern based detec-
tion fails. As usual, the pattern based detection is port independent. The probing parsers will only run on the
detection-ports.

SMB is commonly used to transfer the DCERPC protocol. This traffic is also handled by this parser.

Resource limits

Several options are available for limiting record sizes and data chunk tracking.

smb:
enabled: yes
max-read-size: 8mb
max-write-size: 1mb

max-read-queue-size: 16mb
max-read-queue-cnt: 16

max-write-queue-size: 16mb
max-write-queue-cnt: 16

The max-read-size option can be set to control the max size of accepted READ records. Events will be raised if a
READ request asks for too much data and/or if READ responses are too big. A value of 0 disables the checks.

250 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

The max-write-size option can be set to control the max size of accepted WRITE request records. Events will be raised
if a WRITE request sends too much data. A value of O disables the checks.

Additionally if the max-read-size or max-write-size values in the "negotiate protocol response" exceeds this limit an
event will also be raised.

For file tracking, extraction and file data inspection the parser queues up out of order data chunks for both READs and
WRITEs. To avoid using too much memory the parser allows for limiting both the size in bytes and the number of
queued chunks.

smb:
enabled: yes

max-read-queue-size: 16mb
max-read-queue-cnt: 16

max-write-queue-size: 16mb
max-write-queue-cnt: 16

max-read-queue-size controls how many bytes can be used per SMB flow for out of order READs. max-read-queue-cnt
controls how many READ chunks can be queued per SMB flow. Processing of these chunks will be blocked when any
of the limits are exceeded, and an event will be raised.

max-write-queue-size and max-write-queue-cnt are as the READ variants, but then for WRITEs.

Configure HTTP2
HTTP2 has 2 parameters that can be customized. The point of these 2 parameters is to find a balance between the
completeness of analysis and the resource consumption.

http2.max-table-size refers to SETTINGS_HEADER_TABLE_SIZE from rfc 7540 section 6.5.2. Its default value is
4096 bytes, but it can be set to any uint32 by a flow.

http2.max-streams refers to SETTINGS_MAX_CONCURRENT_STREAMS from rfc 7540 section 6.5.2. Its default
value is unlimited.

SSL/TLS

SSL/TLS parsers track encrypted SSLv2, SSLv3, TLSv1, TLSv1.1 and TLSv1.2 sessions.

Protocol detection is done using patterns and a probing parser running on only TCP/443 by default. The pattern based
protocol detection is port independent.

tls:
enabled: yes
detection-ports:
dp: 443

What to do when the encrypted communications start:

- default: keep tracking TLS session, check for protocol anomalies,

inspect tls_* keywords. Disables inspection of unmodified
'‘content' signatures.

- bypass: stop processing this flow as much as possible. No further
TLS parsing and inspection. Offload flow bypass to kernel
or hardware if possible.

R R W

(continues on next page)

12.1. Suricata.yaml 251

Suricata User Guide, Release 7.0.0

(continued from previous page)

- full: keep tracking and inspection as normal. Unmodified content
keyword signatures are inspected as well.

#

For best performance, select 'bypass'.

#

#encryption-handling: default

Encrypted traffic

There is no decryption of encrypted traffic, so once the handshake is complete continued tracking of the session is of
limited use. The encryption-handling option controls the behavior after the handshake.

If encryption-handling is set to default (or if the option is not set), Suricata will continue to track the SSL/TLS
session. Inspection will be limited, as raw content inspection will still be disabled. There is no point in doing pattern
matching on traffic known to be encrypted. Inspection for (encrypted) Heartbleed and other protocol anomalies still
happens.

When encryption-handling is set to bypass, all processing of this session is stopped. No further parsing and
inspection happens. If stream.bypass is enabled this will lead to the flow being bypassed, either inside Suricata or
by the capture method if it supports it and is configured for it.

Finally, if encryption-handling is set to full, Suricata will process the flow as normal, without inspection limita-
tions or bypass.

The option has replaced the no-reassemble option. If no-reassemble is present, and encryption-handling
is not, false is interpreted as encryption-handling: default and true is interpreted as
encryption-handling: bypass.

Modbus

According to MODBUS Messaging on TCP/IP Implementation Guide V1.0b, it is recommended to keep the TCP
connection opened with a remote device and not to open and close it for each MODBUS/TCP transaction. In that case,
it is important to set the stream-depth of the modbus as unlimited.

modbus:
Stream reassembly size for modbus, default is 0
stream-depth: 0

MQTT

The maximum size of a MQTT message is 256MB, potentially containing a lot of payload data (such as properties,
topics, or published payloads) that would end up parsed and logged. To acknowledge the fact that most MQTT messages,
however, will be quite small and to reduce the potential for denial of service issues, it is possible to limit the maximum
length of a message that Suricata should parse. Any message larger than the limit will just be logged with reduced
metadata, and rules will only be evaluated against a subset of fields. The default is 1 MB.

mgtt:
max-msg-length: 1lmb

252 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

SMTP

SMTP parsers can extract files from attachments. It is also possible to extract raw conversations as files with the key
raw-extraction. Note that in this case the whole conversation will be stored as a file, including SMTP headers and
body content. The filename will be set to "rawmsg". Usual file-related signatures will match on the raw content of
the email. This configuration parameter has a false default value. It is incompatible with decode-mime. If both are
enabled, raw-extraction will be automatically disabled.

smtp:
extract messages in raw format from SMTP
raw-extraction: true

Maximum transactions

MQTT, FTP, PostgreSQL, SMB, DCERPC and NFS have each a max-tx parameter that can be customized. max-tx
refers to the maximum number of live transactions for each flow. An app-layer event protocol.too_many_transactions
is triggered when this value is reached. The point of this parameter is to find a balance between the completeness of
analysis and the resource consumption.

For HTTP2, this parameter is named max-streams as an HTTP2 stream will get translated into one Suricata transaction.
This configuration parameter is used whatever the value of SETTINGS_MAX_CONCURRENT_STREAMS negotiated
between a client and a server in a specific flow is.

12.1.15 Engine Logging
The engine logging system logs information about the application such as errors and other diagnostic information during
startup, runtime and shutdown of the Suricata engine. This does not include Suricata generated alerts and events.
The engine logging system has the following log levels:

* error

* warning

* notice

* info

* perf

* config

* debug

Note that debug level logging will only be emitted if Suricata was compiled with the --enable-debug configure
option.

The first option within the logging configuration is the default-log-level. This option determines the severity/importance
level of information that will be displayed. Messages of lower levels than the one set here, will not be shown. The default
setting is Info. This means that error, warning and info will be shown and the other levels won't be.

12.1. Suricata.yaml 253

Suricata User Guide, Release 7.0.0

Default Configuration Example

Logging configuration. This is not about logging IDS alerts/events, but
output about what Suricata is doing, like startup messages, errors, etc.
logging:

The default log level, can be overridden in an output section.

Note that debug level logging will only be emitted if Suricata was

compiled with the --enable-debug configure option.

#

This value is overridden by the SC_LOG_LEVEL env var.

default-log-level: notice

The default output format. Optional parameter, should default to

something reasonable if not provided. Can be overridden in an

output section. You can leave this out to get the default.

#

This console log format value can be overridden by the SC_LOG_FORMAT env var.
#default-log-format: "%D: %S: %M"

#

For the pre-7.0 log format use:

#default-log-format: "[%i] %t [%S] - (%f:%1) <%d> (%n) -- "

A regex to filter output. Can be overridden in an output section.
Defaults to empty (no filter).

#

This value is overridden by the SC_LOG_OP_FILTER env var.
default-output-filter:

Define your logging outputs. If none are defined, or they are all
disabled you will get the default - console output.

outputs:

- console:
enabled: yes
type: json

- file:

enabled: yes
level: info
filename: suricata.log
format: "[%1 - %m] %z %d: %S: %M"
type: json
- syslog:
enabled: no
facility: locals
format: "[%1] <%d> -- "
type: json

254 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

Default Log Level

Example:

logging:
default-log-level: info

This option sets the default log level. The default log level is notice. This value will be used in the individual logging
configuration (console, file, syslog) if not otherwise set.

Note: The -v command line option can be used to quickly increase the log level at runtime. See the -v command line
option.

The default-log-1level set in the configuration value can be overridden by the SC_LOG_LEVEL environment vari-
able.

Default Log Format

A logging line exists of two parts. First it displays meta information (thread id, date etc.), and finally the actual log
message. Example:

[27708] 15/10/2010 -- 11:40:07 - (suricata.c:425) <Info> (main) - This is Suricata.,
—version 1.0.2

(Here the part until the — is the meta info, "This is Suricata 1.0.2" is the actual message.)

It is possible to determine which information will be displayed in this line and (the manner how it will be displayed) in
which format it will be displayed. This option is the so called format string:

default-log-format: "[%i] %t - (%f:%l) <%d> (%n) -- "

The % followed by a character has a special meaning. There are thirteen specified signs:

z: ISO-like formatted timestamp: YYYY-MM-DD HH:MM:SS

t: Original Suricata log timestamp: DD/MM/YYYY -- HH:MM::SS

p: Process ID. Suricata's whole processing consists of multiple threads.
i: Thread ID. ID of individual threads.

m: Thread module name. (Outputs, Detect etc.)

d: Log-level of specific log-event. (Error, info, debug etc.)

D: Compact log format (E for Error, i for info etc.)

S: Subsystem name.

T: Thread name.

M: Log message body.

f: Filename. Name of C-file (source code) where log-event is generated.
1: Line-number within the filename, where the log-event is generated in the source-
—code.

n: Function-name in the C-code (source code).

The last three options, f, 1 and n, are mainly convenient for developers.

The log-format can be overridden in the command line by the environment variable: SC_LOG_FORMAT

12.1. Suricata.yaml 255

Suricata User Guide, Release 7.0.0

Output Filter

Within logging you can set an output-filter. With this output-filter you can set which part of the event-logs should be
displayed. You can supply a regular expression (Regex). A line will be shown if the regex matches.

default-output-filter: #In this option the regular expression can be.
—entered.

This value is overridden by the environment var: SC_LOG_OP_FILTER

Logging Outputs

There are different ways of displaying output. The output can appear directly on your screen, it can be placed in a file
or via syslog. The last mentioned is an advanced tool for log-management. The tool can be used to direct log-output
to different locations (files, other computers etc.)

outputs:
- console: #0Output on your screen.
enabled: yes #This option is enabled.
#level: notice #Use a different level than the default.
- file: #0utput stored in a file.
enabled: no #This option is not enabled.
filename: /var/log/suricata.log #Filename and location on disc.
level: info #Use a different level than the default.
- syslog: #This is a program to direct log-output.,
—to several directions.
enabled: no #The use of this program is not enabled.
facility: local5s #In this option you can set a syslog.
—facility.
format: "[%i] <%d> -- " #The option to set your own format.
#level: notice #Use a different level than the default.

12.1.16 Packet Acquisition

Data Plane Development Kit (DPDK)

Data Plane Development Kit is a framework for fast packet processing in data plane applications running on a wide
variety of CPU architectures. DPDK's Environment Abstraction Layer (EAL) provides a generic interface to low-level
resources. It is a unique way how DPDK libraries access NICs. EAL creates an API for an application to access NIC
resources from the userspace level. In DPDK, packets are not retrieved via interrupt handling. Instead, the application
polls the NIC for newly received packets.

DPDK allows the user space application to directly access memory where the NIC stores the packets. As a result,
neither DPDK nor the application copies the packets for the inspection. The application directly processes packets via
passed packet descriptors.

To use DPDK capture module, Suricata must be compiled with DPDK option enabled. Support for DPDK can be
enabled in configure step of the build process such as:

./configure --enable-dpdk

Suricata makes use of DPDK for packet acquisition in workers runmode. The whole DPDK configuration resides in
the dpdk: node. This node encapsulates 2 main subnodes, and those are eal-params and interfaces.

256 Chapter 12. Configuration

https://www.dpdk.org/
https://doc.dpdk.org/guides/prog_guide/env_abstraction_layer.html
https://doc.dpdk.org/guides/prog_guide/poll_mode_drv.html

Suricata User Guide, Release 7.0.0

Metwork driver
{configurafion)

T

COMFIGURATION

Kernel space

DATA
POLLING

Y

I

Application

Fig. 1: High-level overview of DPDK application

12.1. Suricata.yaml

257

Suricata User Guide, Release 7.0.0

dpdk:
eal-params:
proc-type: primary
allow: ["0000:3b:00.0", "0000:3b:00.1"]
interfaces:
- interface: 0000:3b:00.0
threads: auto
promisc: true
multicast: true
checksum-checks: true
checksum-checks-offload: true
mtu: 1500
mempool-size: 65535
mempool-cache-size: 257
rx-descriptors: 1024
tx-descriptors: 1024
copy-mode: none
copy-iface: none # or PCIe address of the second interface

The DPDK arguments, which are typically provided through the command line, are contained in the node dpdk.eal-
params. EAL is configured and initialized using these parameters. There are two ways to specify arguments: lengthy
and short. Dashes are omitted when describing the arguments. This setup node can be used to set up the memory
configuration, accessible NICs, and other EAL-related parameters, among other things. The node dpdk.eal-params
also supports multiple arguments of the same type. This can be useful for EAL arguments such as --vdev, --allow,
or --block. Values for these EAL arguments are specified as a comma-separated list. An example of such usage can
be found in the example above where the allow argument only makes 0000:3b:00.0 and 0000:3b:00.1 accessible to
Suricata. arguments with list node. such as --vdev, --allow, --block eal options. The definition of lcore affinity as
an EAL parameter is a standard practice. However, lcore parameters like -/, -c, and --Icores * are specified within the
suricata-yaml-threading section to prevent configuration overlap.

The node dpdk.interfaces wraps a list of interface configurations. Items on the list follow the structure that can be
found in other capture interfaces. The individual items contain the usual configuration options such as threads/copy-
modelchecksum-checks settings. Other capture interfaces, such as AF_PACKET, rely on the user to ensure that NICs
are appropriately configured. Configuration through the kernel does not apply to applications running under DPDK.
The application is solely responsible for the initialization of the NICs it is using. So, before the start of Suricata, the
NICs that Suricata uses, must undergo the process of initialization. As a result, there are extra configuration options
(how NICs can be configured) in the items (interfaces) of the dpdk.interfaces list. At the start of the configuration
process, all NIC offloads are disabled to prevent any packet modification. According to the configuration, checksum
validation offload can be enabled to drop invalid packets. Other offloads can not currently be enabled. Additionally,
the list items in dpdk.interfaces contain DPDK specific settings such as mempool-size or rx-descriptors. These settings
adjust individual parameters of EAL. One of the entries in dpdk.interfaces is the default interface. When loading
interface configuration and some entry is missing, the corresponding value of the default interface is used.

The worker threads must be assigned to specific cores. The configuration module threading must be used to set thread
affinity. Worker threads can be pinned to cores in the array configured in threading.cpu-affinity["worker-cpu-set"].
Performance-oriented setups have everything (the NIC, memory, and CPU cores interacting with the NIC) based on
one NUMA node. It is therefore required to know the layout of the server architecture to get the best results. The
CPU core ids and NUMA locations can be determined for example from the output of /proc/cpuinfo where physical
id described the NUMA number. The NUMA node to which the NIC is connected to can be determined from the file
/sys/class/met/<KERNEL NAME OF THE NIC>/device/numa_node.

Check ids and NUMA location of individual CPU cores
cat /proc/cpuinfo | grep 'physical id\|processor’

(continues on next page)

258 Chapter 12. Configuration

https://doc.dpdk.org/guides/linux_gsg/linux_eal_parameters.html

Suricata User Guide, Release 7.0.0

(continued from previous page)

Check NUMA node of the NIC
cat /sys/class/net/<KERNEL NAME OF THE NIC>/device/numa_node e.g.
cat /sys/class/net/ethl/device/numa_node

Suricata operates in workers runmode. Packet distribution relies on Receive Side Scaling (RSS), which distributes
packets across the NIC queues. Individual Suricata workers then poll packets from the NIC queues. Internally, DPDK
runmode uses a symmetric hash (0x6d5a) that redirects bi-flows to specific workers.

Before Suricata can be run, it is required to allocate a sufficient number of hugepages. For efficiency, hugepages are
continuous chunks of memory (pages) that are larger (2 MB+) than what is typically used in the operating systems (4
KB). A lower count of pages allows faster lookup of page entries. The hugepages need to be allocated on the NUMA
node where the NIC and affiniated CPU cores reside. For example, if the hugepages are allocated only on NUMA node
0 and the NIC is connected to NUMA node 1, then the application will fail to start. As a result, it is advised to identify
the NUMA node to which the NIC is attached before allocating hugepages and setting CPU core affinity to that node.
In case Suricata deployment uses multiple NICs, hugepages must be allocated on each of the NUMA nodes used by
the Suricata deployment.

To check number of allocated hugepages:
sudo dpdk-hugepages.py -s

alternative (older) way

grep Huge /proc/meminfo

Allocate 2 GB in hugepages on all available NUMA nodes:

(number of hugepages depend on the default size of hugepages 2 MB / 1 GB)

sudo dpdk-hugepages.py --setup 2G

alternative (older) way allocates 1024 2 MB hugepages but only on NUMA 0

echo 1024 | sudo tee \
/sys/devices/system/node/node®/hugepages/hugepages-2048kB/nr_hugepages

DPDK memory pools hold packets received from NICs. These memory pools are allocated in hugepages. One memory
pool is allocated per interface. The size of each memory pool can be individual and is set with the mempool-size.
Memory (in bytes) for one memory pool is calculated as: mempool-size * mtu. The sum of memory pool requirements
divided by the size of one hugepage results in the number of required hugepages. It causes no problem to allocate more
memory than required, but it is vital for Suricata to not run out of hugepages.

The mempool cache is local to the individual CPU cores and holds packets that were recently processed. As the
mempool is shared among all cores, the cache tries to minimize the required inter-process synchronization. The rec-
ommended size of the cache is covered in the YAML file.

To be able to run DPDK on Intel cards, it is required to change the default Intel driver to either vfio-pci or igb_uio driver.
The process is described in DPDK manual page regarding Linux drivers. DPDK 1is natively supported by Mellanox
and thus their NICs should work "out of the box".

Current DPDK support involves Suricata running on:
 a physical machine with a physical NICs such as:

mlx5 (ConnectX-4/ConnectX-5/ConnectX-6)

ixgbe
i40e

— ice
¢ a virtual machine with virtual interfaces such as:

— ¢e1000

12.1. Suricata.yaml 259

https://www.ran-lifshitz.com/2014/08/28/symmetric-rss-receive-side-scaling/
https://doc.dpdk.org/guides/linux_gsg/linux_drivers.html

Suricata User Guide, Release 7.0.0

- VMXNETS3
— virtio-net
Other NICs using the same driver as mentioned above should work as well. The DPDK capture interface has not been

tested neither with the virtual interfaces nor in the virtual environments like VMs, Docker or similar.

The minimal supported DPDK is version 19.11 which should be available in most repositories of major distributions.
Alternatively, it is also possible to use meson and ninja to build and install DPDK from source files. It is required to
have correctly configured tool pkg-config as it is used to load libraries and CFLAGS during the Suricata configuration
and compilation. This can be tested by querying DPDK version as:

pkg-config --modversion libdpdk

Pf-ring

The Pf_ring is a library that aims to improve packet capture performance over libcap. It performs packet acquisition.
There are three options within Pf_ring: interface, cluster-id and cluster-type.

pfring:
interface: eth® # In this option you can set the network-interface
on which you want the packets of the network to be read.

Pf_ring will load balance packets based on flow. All packet acquisition threads that will participate in the load balancing
need to have the same cluster-id. It is important to make sure this ID is unique for this cluster of threads, so that no
other engine / program is making use of clusters with the same id.

cluster-id: 99

Pf_ring can load balance traffic using pf_ring-clusters. All traffic for pf_ring can be load balanced according to the
configured cluster type value; in a round robin manner or a per flow manner that are part of the same cluster. All traffic
for pf_ring will be load balanced across acquisition threads of the same cluster id.

The "inner" flow means that the traffic will be load balanced based on address tuple after the outer vlan has been
removed.

Cluster Type Value
cluster_flow src ip, src_port, dst ip, dst port, proto, vlan
cluster_inner_flow src ip, src port, dst ip, dst port, proto, vlan

cluster_inner_flow_2_tuple | srcip, dstip
cluster_inner_flow_4_tuple | src ip, src port, dst ip, dst port
cluster_inner_flow_5_tuple | src ip, src port, dst ip, dst port, proto
cluster_round_robin not recommended

The cluster_round_robin manner is a way of distributing packets one at a time to each thread (like distributing playing
cards to fellow players). The cluster_flow manner is a way of distributing all packets of the same flow to the same
thread. The flows itself will be distributed to the threads in a round-robin manner.

If your deployment has VLANS, the cluster types with "inner" will use the innermost address tuple for distribution.

The default cluster type is cluster_£flow; the cluster_round_robin is not recommended with Suricata.

cluster-type: cluster_inner_flow_5_tuple

260 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

NFQ

Using NFQUEUE in iptables rules, will send packets to Suricata. If the mode is set to 'accept’, the packet that has
been send to Suricata by a rule using NFQ, will by default not be inspected by the rest of the iptables rules after being
processed by Suricata. There are a few more options to NFQ to change this if desired.

If the mode is set to 'repeat’, the packets will be marked by Suricata and be re-injected at the first rule of iptables. To
mitigate the packet from being going round in circles, the rule using NFQ will be skipped because of the mark.

If the mode is set to 'route’, you can make sure the packet will be send to another tool after being processed by Suricata.
It is possible to assign this tool at the mandatory option 'route_queue'. Every engine/tool is linked to a queue-number.
This number you can add to the NFQ rule and to the route_queue option.

Add the numbers of the options repeat_mark and route_queue to the NFQ-rule:

iptables -I FORWARD -m mark ! --mark $MARK/$MASK -j NFQUEUE
nfq:

mode: accept #By default the packet will be accepted or dropped by.
—Suricata

repeat_mark: 1 #If the mode is set to 'repeat', the packets will be,

—marked after being
#processed by Suricata.
repeat_mask: 1
route_queue: 2 #Here you can assign the queue-number of the tool that.
—Suricata has to
#send the packets to after processing them.

Example 1 NFQI

mode: accept

iptables and NFQ
Mode: accept

3 Suricata

Example 2 NFQ

mode: repeat

12.1. Suricata.yaml 261

Suricata User Guide, Release 7.0.0

iptables and NFQ
Mode: repeat

REPEAT/DROP

Suricata

Example 3 NFQ

mode: route

iptables and NFQ
Mode: route

Other tool
'

262 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

Ipfw
Suricata does not only support Linux, it supports the FreeBSD operating system (this is an open source Unix operating
system) and Mac OS X as well. The in-line mode on FreeBSD uses ipfw (IP-firewall).

Certain rules in ipfw send network-traffic to Suricata. Rules have numbers. In this option you can set the rule to
which the network-traffic will be placed back. Make sure this rule comes after the one that sends the traffic to Suricata,
otherwise it will go around in circles.

The following tells the engine to re-inject packets back into the ipfw firewall at rule number 5500:

ipfw:
ipfw-reinjection-rule-number: 5500

Example 16 Ipfw-reinjection.

FreeBSD
Ipfw rules

3 Suricata

4 to Suricata Sm

12.1.17 Rules

Rule Files

Suricata by default is setup for rules to be managed by Suricata-Update with the following rule file configuration:

default-rule-path: /var/lib/suricata/rules
rule-files:
- suricata.rules

12.1. Suricata.yaml 263

Suricata User Guide, Release 7.0.0

A default installation of Suricata-Update will write out the rules to /var/lib/suricata/rules/suricata.rules.

You may want to edit this section if you are not using Suricata-Update or want to add rule files that are not managed
by Suricata-Update, for example:

default-rule-path: /var/lib/suricata/rules
rule-files:

- suricata.rules

- /etc/suricata/rules/custom.rules

File names can be specific with an absolute path, or just the base name. If just the base name is provided it will be
looked for in the default-rule-path.

If a rule file cannot be found, Suricata will log a warning message and continue to load, unless --init-errors-fatal
has been specified on the command line, in which case Suricata will exit with an error code.

For more information on rule management see Rule Management.

Threshold-file

Within this option, you can state the directory in which the threshold-file will be stored. The default directory is:
/etc/suricata/threshold.config

Classifications

The Classification-file is a file which makes the purpose of rules clear.

Some rules are just for providing information. Some of them are to warn you for serious risks like when you are being
hacked etc.

In this classification-file, there is a part submitted to the rule to make it possible for the system-administrator to distin-
guish events.

A rule in this file exists of three parts: the short name, a description and the priority of the rule (in which 1 has the
highest priority and 4 the lowest).

You can notice these descriptions returning in the rule and events / alerts.

Example:
configuration classification: misc-activity,Misc activity,3
Rule:

alert tcp $HOME_NET 21 -> $EXTERNAL_NET any (msg:"ET POLICY FTP Login Successful (non-
—,anonymous)";

flow: from_server,established;flowbits:isset,ET.ftp.user.login; flowbits:isnotset,ftp.
—user.logged_in;

flowbits:set,ftp.user.logged_in; content:"230 ";pcre:!"/A230(\s+USER)?\s+(anonymous | ftp)/
<smi";

classtype:misc-activity; reference:urldoc.emergingthreats.net/2003410, ;
reference:url,www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/POLICY/POLICY_FTP_Login;..
—s1d:2003410; rev:7;)

Event/Alert:

(continues on next page)

264 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

(continued from previous page)

10/26/10-10:13:42.904785 [**] [1:2003410:7] ET POLICY FTP Login Successful (non-
—,anonymous) [**]
[Classification: Misc activity[Priority: 3] {TCP} 192.168.0.109:21 -> x.x.x.x:34117

You can set the direction of the classification configuration.

classification-file: /etc/suricata/classification.config

Rule-vars

There are variables which can be used in rules.

Within rules, there is a possibility to set for which IP-address the rule should be checked and for which IP-address it
should not.

This way, only relevant rules will be used. To prevent you from having to set this rule by rule, there is an option in
which you can set the relevant IP-address for several rules. This option contains the address group vars that will be
passed in a rule. So, after HOME_NET you can enter your home IP-address.

vars:
address-groups:
HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]" #By using [], it is.
—possible to set
#complicated variables.
EXTERNAL_NET: any
HTTP_SERVERS: "$HOME_NET" #The $-sign tells that.
—what follows is
#a variable.
SMTP_SERVERS: "$HOME_NET"
SQL_SERVERS: "$HOME_NET"
DNS_SERVERS: "$HOME_NET"
TELNET_SERVERS: "$HOME_NET"
ATM_SERVERS: any

It is a convention to use upper-case characters.

There are two kinds of variables: Address groups and Port-groups. They both have the same function: change the rule
so it will be relevant to your needs.

In a rule there is a part assigned to the address and one to the port. Both have their variable.

All options have to be set. If it is not necessary to set a specific address, you should enter 'any'.

port-groups:
HTTP_PORTS: "80"
SHELLCODE_PORTS: "!80"
ORACLE_PORTS: 1521
SSH_PORTS: 22

12.1. Suricata.yaml 265

Suricata User Guide, Release 7.0.0

Host-os-policy

Operating systems differ in the way they process fragmented packets and streams. Suricata performs differently with
anomalies for different operating systems. It is important to set of which operating system your IP-address makes use
of, so Suricata knows how to process fragmented packets and streams. For example in stream-reassembly there can be
packets with overlapping payloads.

Example 17 Overlapping payloads

Packet 3

Src IP

Stream

AR AAA BB CC
Or
AA BEB BB CC

In the configuration-file, the operating-systems are listed. You can add your IP-address behind the name of the operating
system you make use of.

host-os-policy:
windows: [0.0.0.0/0]
bsd: []
bsd_right: []
old_linux: []
linux: [10.0.0.0/8, 192.168.1.100, "8762:2352:6241:7245:E000:0000:0000:0000"]
old_solaris: []
solaris: ["::1"]
hpux10: []
hpux11: []
irix: []
macos: []
vista: []
windows2k3: []

266 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

12.1.18 Engine analysis and profiling

Suricata offers several ways of analyzing performance of rules and the engine itself.

Engine-analysis
The option engine-analysis provides information for signature writers about how Suricata organizes signatures inter-
nally.

Like mentioned before, signatures have zero or more patterns on which they can match. Only one of these patterns will
be used by the multi pattern matcher (MPM). Suricata determines which patterns will be used unless the fast-pattern
rule option is used.

The option engine-analysis creates a new log file in the default log dir. In this file all information about signatures and
patterns can be found so signature writers are able to see which pattern is used and change it if desired.

To create this log file, you have to run Suricata with ./src/suricata -c suricata.yaml --engine-analysis.

engine-analysis:
rules-fast-pattern: yes

Example:

[10703] 26/11/2010 -- 11:41:15 - (detect.c:560) <Info> (SigLoadSignatures)
-- Engine-Analysis for fast_pattern printed to file - /var/log/suricata/rules_fast_
—pattern.txt

alert tcp any any -> any any (content:"Volume Serial Number"; sid:1292;)

== Sid: 1292 ==

Fast pattern matcher: content

Fast pattern set: no

Fast pattern only set: no

Fast pattern chop set: no

Content negated: no

Original content: Volume Serial Number
Final content: Volume Serial Number

alert tcp any any -> any any (content:"abc"; content:'"defghi"; sid:1;)
== Sid: ==

Fast pattern matcher: content

Fast pattern set: no

Fast pattern only set: no

Fast pattern chop set: no

Content negated: no

Original content: defghi

Final content: defghi

alert tcp any any -> any any (content:"abc"; fast_pattern:only; content:"defghi"; sid:1;)

(continues on next page)

12.1. Suricata.yaml 267

Suricata User Guide, Release 7.0.0

(continued from previous page)

== Sid: ==

Fast pattern matcher: content
Fast pattern set: yes

Fast pattern only set: yes
Fast pattern chop set: no
Content negated: no

Original content: abc

Final content: abc

alert tcp any any -> any any (content:"abc"; fast_pattern; content:"defghi"; sid:1;)
== Sid: ==

Fast pattern matcher: content

Fast pattern set: yes

Fast pattern only set: no

Fast pattern chop set: no

Content negated: no

Original content: abc

Final content: abc

alert tcp any any -> any any (content:"abc"; fast_pattern:1,2; content:"defghi"; sid:1;)

== Sid: ==

Fast pattern matcher: content
Fast pattern set: yes

Fast pattern only set: no

Fast pattern chop set: yes

Fast pattern offset, length: 1, 2
Content negated: no

Original content: abc

Final content: bc

Rule and Packet Profiling settings

Rule profiling is a part of Suricata to determine how expensive rules are. Some rules are very expensive while inspecting
traffic. Rule profiling is convenient for people trying to track performance problems and resolving them. Also for people
writing signatures.

Compiling Suricata with rule-profiling will have an impact on performance, even if the option is disabled in the con-
figuration file.

To observe the rule-performance, there are several options.

profiling:
rules:
enabled: yes

This engine is not used by default. It can only be used if Suricata is compiled with:

268 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

-- enable-profiling

At the end of each session, Suricata will display the profiling statistics. The list will be displayed sorted.

This order can be changed as pleased. The choice is between ticks, avgticks, checks, maxticks and matches. The setting
of your choice will be displayed from high to low.

The amount of time it takes to check the signatures, will be administrated by Suricata. This will be counted in ticks.
One tick is one CPU computation. 3 GHz will be 3 billion ticks.

Beside the amount of checks, ticks and matches it will also display the average and the maximum of a rule per session
at the end of the line.

The option Limit determines the amount of signatures of which the statistics will be shown, based on the sorting.

sort: avgticks
limit: 100

Example of how the rule statistics can look like;

Rule Ticks % Checks Matches Max Tick o
—Avg

Ticks

7560 107766621 0.02 138 37 105155334 o
-780917.54

11963 1605394413 0.29 2623 1 144418923 o
—612045.14

7040 1431034011 0.26 2500 0 106018209 o
—572413.60

5726 1437574662 0.26 2623 1 115632900 o
—>548065.06

7037 1355312799 0.24 2562 0 116048286 o
-»529005.78

11964 1276449255 0.23 2623 1 96412347 o
—486637.15

7042 1272562974 0.23 2623 1 96405993 o
-485155.54

5719 1233969192 0.22 2562 0 106439661 o
—481642.93

5720 1204053246 0.21 2562 0 125155431 o
-469966.14

Packet Profiling

packets:
Profiling can be disabled here, but it will still have a

performance impact if compiled in.

enabled: yes #this option is enabled by default
filename: packet_stats.log #name of the file in which packet.

(continues on next page)

12.1. Suricata.yaml 269

Suricata User Guide, Release 7.0.0

(continued from previous page)

—profiling information will be
#stored.
append: yes #If set to yes, new packet profiling.
—information will be added to the
#information that was saved last in the.
—file.

per packet csv output
csv:

Output can be disabled here, but it will still have a
performance impact if compiled in.

enabled: no #the sending of packet output to a csv-
—file is by default disabled.
filename: packet_stats.csv #name of the file in which csv packet.

—profiling information will be
#stored

Packet profiling is enabled by default in suricata.yaml but it will only do its job if you compiled Suricata with --enable
profiling.

The filename in which packet profiling information will be stored, is packet-stats.log. Information in this file can be
added to the last information that was saved there, or if the append option is set to no, the existing file will be overwritten.

Per packet, you can send the output to a csv-file. This file contains one line for each packet with all profiling information
of that packet. This option can be used only if Suricata is build with --enable-profiling and if the packet profiling option
is enabled in yaml.

It is best to use runmode 'single' if you would like to profile the speed of the code. When using a single thread, there is
no situation in which two threads have to wait for each other. When using two threads, the time threads might have to
wait for each other will be taken in account when/during profiling packets. For more information see Packet Profiling.

12.1.19 Decoder

Teredo

The Teredo decoder can be disabled. It is enabled by default.

decoder:

Teredo decoder is known to not be completely accurate

it will sometimes detect non-teredo as teredo.

teredo:
enabled: true
ports to look for Teredo. Max 4 ports. If no ports are given, or
the value is set to 'any', Teredo detection runs on _all_ UDP packets.
ports: $TEREDO_PORTS # syntax: '[3544, 1234]'

Using this default configuration, Teredo detection will run on UDP port 3544. If the ports parameter is missing, or set
to any, all ports will be inspected for possible presence of Teredo.

270 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

12.1.20 Advanced Options

stacktrace

Display diagnostic stacktraces when a signal unexpectedly terminates Suricata, e.g., such as SIGSEGV or SIGABRT.
Requires the 1ibunwind library to be available. The default value is to display the diagnostic message if a signal
unexpectedly terminates Suricata -- e.g., SIGABRT or SIGSEGV occurs while Suricata is running.

logging:
Requires libunwind to be available when Suricata is configured and built.
If a signal unexpectedly terminates Suricata, displays a brief diagnostic
message with the offending stacktrace if enabled.
#stacktrace-on-signal: on

luajit
states

Luajit has a strange memory requirement, it's 'states' need to be in the first 2G of the process' memory. For this reason
when luajit is used the states are allocated at the process startup. This option controls how many states are preallocated.

If the pool is depleted a warning is generated. Suricata will still try to continue, but may fail if other parts of the engine
take too much memory. If the pool was depleted a hint will be printed at the engines exit.

States are allocated as follows: for each detect script a state is used per detect thread. For each output script, a single
state is used. Keep in mind that a rule reload temporary doubles the states requirement.

12.1.21 Configuration hardening

The security section of suricata.yaml is meant to provide in-depth security configuration options.

Besides landlock, (see Using Landlock LSM), one setting is available. [limit-noproc is a boolean to prevent process
creation by Suricata. If you do not need Suricata to create other processes or threads (you may need it for LUA scripts
for instance or plugins), enable this to call setrlimit with RLIMIT _NPROC argument (see man setrlimit). This prevents
potential exploits against Suricata to fork a new process, even if it does not prevent the call of exec.

Warning! This has no effect on Linux when running as root. If you want a hardened configuration, you probably want
to set run-as configuration parameter so as to drop root privileges.

Beyond suricata.yaml, other ways to harden Suricata are - compilation : enabling ASLR and other exploit mitigation
techniques. - environment : running Suricata on a device that has no direct access to Internet.

Lua

Suricata 7.0 disables Lua rules by default. Lua rules can be enabled in the security. lua section of the configuration
file:

security:
lua:
Allow Lua rules. Disabled by default.
#allow-rules: false

12.1. Suricata.yaml 271

Suricata User Guide, Release 7.0.0

12.2 Global-Thresholds

Thresholds can be configured in the rules themselves, see Thresholding Keywords. They are often set by rule writers
based on their intelligence for creating a rule combined with a judgement on how often a rule will alert.

12.2.1 Threshold Config

Next to rule thresholding more thresholding can be configured on the sensor using the threshold.config.

threshold/event_filter

Syntax:

threshold gen_id <gid>, sig_id <sid>, type <threshold|limit|both>, \
track <by_src|by_dst|by_rule|by_both>, count <N>, seconds <T>

rate_filter

Rate filters allow changing of a rule action when a rule matches.

Syntax:

rate_filter: rate_filter gen_id <gid>, sig_id <sid>, track <tracker>, \
count <c>, seconds <s>, new_action <action>, timeout <timeout>

Example:

rate_filter gen_id 1, sig_id 1000, track by_rule, count 100, seconds 60, \
new_action alert, timeout 30

gen_id

Generator id. Normally 1, but if a rule uses the gid keyword to set another value it has to be matched in the gen_id.

sig_id

Rule/signature id as set by the rule sid keyword.

track

Where to track the rule matches. When using by_src/by_dst the tracking is done per IP-address. The Host table is used
for storage. When using by _rule it's done globally for the rule. Option by_both used to track per IP pair of source and
destination. Packets going to opposite directions between same addresses tracked as the same pair.

272 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

count

Number of rule hits before the rate_filter is activated.

seconds

Time period within which the count needs to be reached to activate the rate_filter

new_action

New action that is applied to matching traffic when the rate_filter is in place.

Values:

<alert|drop|pass|reject>

Note: 'sdrop’ and 'log' are supported by the parser but not implemented otherwise.

timeout

Time in seconds during which the rate_filter will remain active.

Example

Let's say we want to limit incoming connections to our SSH server. The rule 888 below simply alerts on SYN packets
to the SSH port of our SSH server. If an IP-address triggers this more than 10 or more with a minute, the drop
rate_filter is set with a timeout of 5 minutes.

Rule:

alert tcp any any -> $MY_SSH_SERVER 22 (msg:"Connection to SSH server"; \
flow:to_server; flags:S,12; sid:888;)

Rate filter:

rate_filter gen_id 1, sig_id 888, track by_src, count 10, seconds 60, \
new_action drop, timeout 300

suppress

Suppressions can be used to suppress alerts for a rule or a host/network. Actions performed when a rule matches, such
as setting a flowbit, are still performed.

Syntax:

suppress gen_id <gid>, sig_id <sid>
suppress gen_id <gid>, sig_id <sid>, track <by_src|by_dst|by_either>, ip
—.<ip|subnet |addressvar>

Examples:

12.2. Global-Thresholds 273

Suricata User Guide, Release 7.0.0

suppress gen_id 1, sig_id 2002087, track by_src, ip 209.132.180.67

This will make sure the signature 2002087 will never match for src host 209.132.180.67.

Other possibilities/examples:

suppress gen_id 1, sig_id 2003614, track by_src, ip 217.110.97.128/25

suppress gen_id 1, sig_id 2003614, track by_src, ip [192.168.0.0/16,10.0.0.0/8,172.16.0.
-0/12]

suppress gen_id 1, sig_id 2003614, track by_src, ip $HOME_NET

suppress gen_id 1, sig_id 2003614, track by_either, ip 217.110.97.128/25

In the last example above, the by_either tracking means that if either the source ip or destination ip matches
217.110.97.128/25 the rule with sid 2003614 is suppressed.

12.2.2 Global thresholds vs rule thresholds

Note: this section applies to 1.4+ In 1.3 and before mixing rule and global thresholds is not supported.
When a rule has a threshold/detection_filter set a rule can still be affected by the global threshold file.

The rule below will only fire if 10 or more emails are being delivered/sent from a host within 60 seconds.

alert tcp any any -> any 25 (msg:"ET POLICY Inbound Frequent Emails - Possible Spambot.
—Inbound"; \

flow:established; content:"mail from|3a|"; nocase; o
o \

threshold: type threshold, track by_src, count 10, seconds 60; o
— \

reference:url,doc.emergingthreats.net/2002087; classtype:misc-activity; sid:2002087;
< rev:10;)

Next, we'll see how global settings affect this rule.

Suppress

Suppressions can be combined with rules with thresholds/detection_filters with no exceptions.

suppress gen_id 1, sig_id 2002087, track by_src, ip 209.132.180.67
suppress gen_id 0, sig_id 0, track by_src, ip 209.132.180.67
suppress gen_id 1, sig_id 0, track by_src, ip 209.132.180.67

Each of the rules above will make sure 2002087 doesn't alert when the source of the emails is 209.132.180.67. It will
alert for all other hosts.

suppress gen_id 1, sig_id 2002087

This suppression will simply convert the rule to "noalert", meaning it will never alert in any case. If the rule sets a
flowbit, that will still happen.

274 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

Threshold/event_filter

When applied to a specific signature, thresholds and event_filters (threshold from now on) will override the signature
setting. This can be useful for when the default in a signature doesn't suit your environment.

threshold gen_id 1, sig_id 2002087, type both, track by_src, count 3, seconds 5
threshold gen_id 1, sig_id 2002087, type threshold, track by_src, count 10, seconds 60
threshold gen_id 1, sig_id 2002087, type limit, track by_src, count 1, seconds 15

Each of these will replace the threshold setting for 2002087 by the new threshold setting.

Note: overriding all gids or sids (by using gen_id O or sig_id 0) is not supported. Bug https://redmine.
openinfosecfoundation.org/issues/425.

Rate_filter

see https://redmine.openinfosecfoundation.org/issues/425.

12.3 Exception Policies

Suricata has a set of configuration variables to indicate what should the engine do when certain exception conditions,
such as hitting a memcap, are reached.

They are called Exception Policies and are configurable via suricata.yaml. If enabled, the engine will call them when
it reaches exception states.

For developers or for researching purposes, there are also simulation options exposed in debug mode and passed via
command-line. These exist to force or simulate failures or errors and understand Suricata behavior under such condi-
tions.

12.3.1 Exception Policies

Master Switch

It is possible to set all configuration policies via what we call "master switch". This offers a quick way to define what
the engine should do in case of traffic exceptions, while still allowing for the flexibility of indicating a different behavior
for specific exception policies your setup/environment may have the need to.

Define a common behavior for all exception policies.

In IPS mode, the default is drop-flow. For cases when that's not possible, the
engine will fall to drop-packet. To fallback to old behavior (setting each of
them individually, or ignoring all), set this to ignore.

All values available for exception policies can be used, and there is one
extra option: auto - which means drop-flow or drop-packet (as explained above)
in IPS mode, and ignore in IDS mode. Exception policy values are: drop-packet,
drop-flow, reject, bypass, pass-packet, pass-flow, ignore (disable).
exception-policy: auto

HFHOR R KR W W W R

This value will be overwritten by specific exception policies whose settings are also defined in the yaml file.

12.3. Exception Policies 275

https://redmine.openinfosecfoundation.org/issues/425
https://redmine.openinfosecfoundation.org/issues/425
https://redmine.openinfosecfoundation.org/issues/425

Suricata User Guide, Release 7.0.0

Auto

In IPS mode, the default behavior for most of the exception policies is to fail close. This means droping the flow, or
the packet, when the flow action is not supported. The default policy for the midstream exception will be ignore if
midstream flows are accepted.

It is possible to disable this default, by setting the exception policies' "master switch" yaml config option to ignore.

In IDS mode, setting auto mode actually means disabling the master-switch, or ignoring the exception policies.

Specific settings

Exception policies are implemented for:

Table 1: Exception Policy configuration variables

Config setting

Policy variable

Expected behavior

stream.memcap

memcap-policy

If a stream memcap limit is reached, apply the memcap policy to the
packet and/or flow.

stream.midstream

midstream-policy

If a session is picked up midstream, apply the midstream policy to the
flow.

stream.reassembly.me]

megpncap-policy

If stream reassembly reaches memcap limit, apply memcap policy to
the packet and/or flow.

flow.memcap

memcap-policy

Apply policy when the memcap limit for flows is reached and no flow
could be freed up. Policy can only be applied to the packet.

defrag.memcap

memcap-policy

Apply policy when the memcap limit for defrag is reached and no
tracker could be picked up. Policy can only be applied to the packet.

app-layer

error-policy

Apply policy if a parser reaches an error state. Policy can be applied
to packet and/or flow.

To change any of these, go to the specific section in the suricata.yaml file (for more configuration details, check the
suricata.yaml's documentation).

The possible values for the exception policies, and the resulting behaviors, are:

* drop-flow: disable inspection for the whole flow (packets, payload, application layer protocol), drop the packet
and all future packets in the flow.

» drop-packet: drop the packet.

* reject: same as drop-flow, but reject the current packet as well (see reject action in Rule's Action).

* bypass: bypass the flow. No further inspection is done. Bypass may be offloaded.

* pass-flow: disable payload and packet detection; stream reassembly, app-layer parsing and logging still happen.

* pass-packet: disable detection, still does stream updates and app-layer parsing (depending on which policy

triggered it).

* ignore: do not apply exception policies (default behavior).

The drop, pass and reject are similar to the rule actions described in rule actions.

276

Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

12.3.2 Exception Policies and Midstream Pick-up Sessions

Suricata behavior can be difficult to track in case of midstream session pick-ups. Consider this matrix illustrating the
different interactions for midstream pick-ups enabled or not and the various exception policy values:

Table 2: Exception Policy Behaviors - IDS Mode

Excep- Midstream pick-up sessions EN- | Midstream pick-up sessions DISABLED
tion ABLED (stream.midstream=true) (stream.midstream=false)
Policy
Ignore Session tracket and parsed. Session not tracked. No app-layer inspection or logging.
No detection. No stream reassembly.
Drop-flow | Not valid.* Not valid.*
Drop- Not valid.* Not valid.*
packet
Reject Not valid.* Session not tracked, flow REJECTED.
Pass-flow | Track session, inspect and log app-layer | Session not tracked. No app-layer inspection or logging.
traffic, no detection. No detection. No stream reassembly.
Pass- Not valid.* Not valid.*
packet
Bypass Not valid.* Session not tracked. No app-layer inspection or logging.
No detection. No stream reassembly.
Auto Midstream policy applied: "ignore". | Midstream policy applied: "ignore". Same behavior.
Same behavior.

The main difference between IDS and IPS scenarios is that in IPS mode flows can be allowed or blocked (as in with
the PASS and DROP rule actions). Packet actions are not valid, as midstream pick-up is a configuration that affects the

whole flow.
Table 3: Exception Policy Behaviors - IPS Mode

Exception Midstream pick-up sessions ENABLED | Midstream pick-up sessions DISABLED

Policy (stream.midstream=true) (stream.midstream=false)

Ignore Session tracket and parsed. Session not tracked. No app-layer inspection or
logging. No detection. No stream reassembly.

Drop-flow Not valid.* Session not tracked. No app-layer inspection or
logging. No detection. No stream reassembly.
Flow DROPPED.

Drop-packet | Not valid.* Not valid.*

Reject Not valid.* Session not tracked, flow DROPPED and RE-
JECTED.

Pass-flow Track session, inspect and log app-layer traffic, | Session not tracked. No app-layer inspection or

no detection.

logging. No detection. No stream reassembly.

Pass-packet | Not valid.* Not valid.*
Bypass Not valid.* Session not tracked. No app-layer inspection or
logging. No detection. No stream reassembly.
Packets ALLOWED.
Auto Midstream policy applied: "ignore". Same be- | Midstream policy applied: "drop-flow". Same
havior. behavior.
Notes:

¢ Not valid means that Suricata will error out and won't start.

* REJECT will make Suricata send a Reset-packet unreach error to the sender of the matching packet.

12.3. Exception Policies

277

Suricata User Guide, Release 7.0.0

12.3.3 Command-line Options for Simulating Exceptions

It is also possible to force specific exception scenarios, to check engine behavior under failure or error conditions.
The available command-line options are:

e simulate-applayer-error-at-offset-ts: force an applayer error in the to server direction at the given
offset.

* simulate-applayer-error-at-offset-tc: force an applayer error in the to client direction at the given
offset.

e simulate-packet-loss: simulate that the packet with the given number (pcap_cnt) from the session was
lost.

* simulate-packet-tcp-reassembly-memcap: simulate that the TCP stream reassembly reached memcap for
the specified packet.

e simulate-packet-tcp-ssn-memcap: simulate that the TCP session hit the memcap for the specified packet.
e simulate-packet-flow-memcap: force the engine to assume that flow memcap is hit at the given packet.

* simulate-packet-defrag-memcap: force Suricata to assume memcap is hit when defragmenting specified
packet.

e simulate-alert-queue-realloc-failure: prevent the engine from dynamically growing the temporary
alert queue, during alerts processing.

12.3.4 Common abbreviations

* applayer: application layer protocol
e memcap: (maximum) memory capacity available

* defrag: defragmentation

12.4 Snort.conf to Suricata.yaml

This guide is meant for those who are familiar with Snort and the snort.conf configuration format. This guide will
provide a 1:1 mapping between Snort and Suricata configuration wherever possible.

12.4.1 Variables

snort.conf

ipvar HOME_NET any
ipvar EXTERNAL_NET any

portvar HTTP_PORTS [80,81,311,591,593,901,1220,1414,1741,1830,2301,2381,2809,3128,3702,
-.4343,4848,5250,7001,7145,7510,7777,7779,8000, 8008, 8014,8028,8080, 8088,8090,8118,8123,
-8180,8181,8243,8280,8800,8888,8899,9000,9080,9090,9091,9443,9999,11371,55555]

portvar SHELLCODE_PORTS !80

suricata.yaml

278 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

vars:
address-groups:

HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]"
EXTERNAL_NET: "!$HOME_NET"

port-groups:
HTTP_PORTS: "80"
SHELLCODE_PORTS: "!80"

Note that Suricata can automatically detect HTTP traffic regardless of the port it uses. So the HTTP_PORTS variable
is not nearly as important as it is with Snort, if you use a Suricata enabled ruleset.

12.4.2 Decoder alerts

snort.conf

Stop generic decode events:
config disable_decode_alerts

Stop Alerts on experimental TCP options
config disable_tcpopt_experimental_alerts

Stop Alerts on obsolete TCP options
config disable_tcpopt_obsolete_alerts

Stop Alerts on T/TCP alerts
config disable_tcpopt_ttcp_alerts

Stop Alerts on all other TCPOption type events:
config disable_tcpopt_alerts

Stop Alerts on invalid ip options
config disable_ipopt_alerts

suricata.yaml

Suricata has no specific decoder options. All decoder related alerts are controlled by rules. See #Rules below.

12.4.3 Checksum handling

snort.conf

config checksum_mode: all

suricata.yaml

Suricata's checksum handling works on-demand. The stream engine checks TCP and IP checksum by default:

stream:
checksum-validation: yes # reject wrong csums

Alerting on bad checksums can be done with normal rules. See #Rules, decoder-events.rules specifically.

12.4. Snort.conf to Suricata.yaml 279

Suricata User Guide, Release 7.0.0

12.4.4 Various configs

Active response

snort.conf

Configure active response for non inline operation. For more information, see REAMDE.
—active
config response: eth® attempts 2

suricata.yaml

Active responses are handled automatically w/o config if rules with the "reject" action are used.

Dropping privileges

snort.conf

Configure specific UID and GID to run snort as after dropping privs. For more.
< Iinformation see snort -h command line options

#

config set_gid:

config set_uid:

Suricata

To set the user and group use the --user <username> and --group <groupname> command-line options.

Snaplen

snort.conf

Configure default snaplen. Snort defaults to MTU of in use interface. For more.
—information see README

#

config snaplen:

#

Suricata always works at full snap length to provide full traffic visibility.

Bpf

snort.conf

Configure default bpf_file to use for filtering what traffic reaches snort. For more.
—Iinformation see snort -h command line options (-F)

#

config bpf_ file:

#

suricata.yaml

BPF filters can be set per packet acquisition method, with the "bpf-filter: <file>" yaml option and in a file using the -F
command line option.

280 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

For example:

pcap:

- interface: eth®
#buffer-size: 16777216
#bpf-filter: "tcp and port 25"
#checksum-checks: auto
#threads: 16
#promisc: no
#snaplen: 1518

12.4.5 Log directory

snort.conf

Configure default log directory for snort to log to. For more information see snort -
—h command line options (-1)

#

config logdir:

suricata.yaml

default-log-dir: /var/log/suricata/

This value is overridden by the -1 command-line option.

12.4.6 Packet acquisition

snort.conf

Configure DAQ related options for inline operation. For more information, see READVME.
—daq

#

config daq: <type>

config daq_dir: <dir>

config daq_mode: <mode>

config dag_var: <var>

#

<type> ::= pcap | afpacket | dump | nfq | ipq | ipfw
<mode> ::= read-file | passive | inline

<var> ::= arbitrary <name>=<value passed to DAQ

<dir> ::= path as to where to look for DAQ module so's

suricata.yaml

Suricata has all packet acquisition support built-in. It's configuration format is very verbose.

pcap:
- interface: eth®
#buffer-size: 16777216
#bpf-filter: "tcp and port 25"
#checksum-checks: auto

(continues on next page)

12.4. Snort.conf to Suricata.yaml 281

Suricata User Guide, Release 7.0.0

(continued from previous page)

#threads: 16
#promisc: no
#snaplen: 1518

pfring:

afpacket:

nfq:

ipfw:

Passive vs inline vs reading files is determined by how Suricata is invoked on the command line.

12.4.7 Rules

snort.conf:

In snort.conf a RULE_PATH variable is set, as well as variables for shared object (SO) rules and preprocessor rules.

var RULE_PATH ../rules
var SO_RULE_PATH ../so_rules
var PREPROC_RULE_PATH ../preproc_rules

include $RULE_PATH/local.rules
include $RULE_PATH/emerging-activex.rules

suricata.yaml:

In the suricata.yaml the default rule path is set followed by a list of rule files. Suricata does not have a concept of shared
object rules or preprocessor rules. Instead of preprocessor rules, Suricata has several rule files for events set by the
decoders, stream engine, http parser etc.

default-rule-path: /etc/suricata/rules
rule-files:

- local.rules

- emerging-activex.rules

The equivalent of preprocessor rules are loaded like normal rule files:

rule-files:

- decoder-events.rules
- stream-events.rules
- http-events.rules

- smtp-events.rules

282 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

12.5 Multi Tenancy

12.5.1 Introduction

Multi tenancy support allows different tenants to use different rule sets with different rule variables.

Tenants are identified by their selector; a selector can be a VLAN, interface/device, or from a pcap file ("direct").

12.5.2 YAML

Add a new section in the main ("master") Suricata configuration file -- suricata.yaml -- named multi-detect.
Settings:
* enabled: yes/no -> is multi-tenancy support enabled
* selector: direct (for unix socket pcap processing, see below), VLAN or device
* loaders: number of loader threads, for parallel tenant loading at startup
* tenants: list of tenants
— id: tenant id (numeric values only)
— yaml: separate yaml file with the tenant specific settings
* mappings:
— VLAN id or device: The outermost VLAN is used to match.

— tenant id: tenant to associate with the VLAN id or device

multi-detect:
enabled: yes
#selector: direct # direct or vlan
selector: vlan
loaders: 3

tenants:
- id: 1

yaml: tenant-1.yaml
- id: 2

yaml: tenant-2.yaml
- id: 3

yaml: tenant-3.yaml

mappings:

- vlan-id: 1000
tenant-id: 1

- vlan-id: 2000
tenant-id: 2

- vlan-id: 1112
tenant-id: 3

The tenant-1.yaml, tenant-2.yaml, tenant-3.yaml each contain a partial configuration:

12.5. Multi Tenancy 283

Suricata User Guide, Release 7.0.0

Set the default rule path here to search for the files.
if not set, it will look at the current working dir
default-rule-path: /etc/suricata/rules
rule-files:

- rulesl

You can specify a threshold config file by setting "threshold-file"
to the path of the threshold config file:
threshold-file: /etc/suricata/threshold.config

classification-file: /etc/suricata/classification.config
reference-config-file: /etc/suricata/reference.config

Holds variables that would be used by the engine.
vars:

Holds the address group vars that would be passed in a Signature.
These would be retrieved during the Signature address parsing stage.
address-groups:

HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]"

EXTERNAL_NET: "!$HOME_NET"

port-groups:
HTTP_PORTS: "80"

SHELLCODE_PORTS: "!80"

vlan-id

Assign tenants to VLAN ids. Suricata matches the outermost VLAN id with this value. Multiple VLANS can have the
same tenant id. VLAN id values must be between 1 and 4094.

Example of VLAN mapping:

mappings:

- vlan-id: 1000
tenant-id: 1

- vlan-id: 2000
tenant-id: 2

- vlan-id: 1112
tenant-id: 3

The mappings can also be modified over the unix socket, see below.

Note: can only be used if vlan.use-for-tracking is enabled.

284 Chapter 12. Configuration

Suricata User Guide, Release 7.0.0

device

Assign tenants to devices. A single tenant can be assigned to a device. Multiple devices can have the same tenant id.

Example of device mapping:

mappings:

- device: ens5f0
tenant-id: 1

- device: ens5fl
tenant-id: 3

The mappings are static and cannot be modified over the unix socket.
Note: Not currently supported for IPS.

Note: support depends on a capture method using the 'livedev' APIL. Currently these are: pcap, AF_PACKET, PF_RING
and Netmap.

12.5.3 Per tenant settings

The following settings are per tenant:
¢ default-rule-path
* rule-files
* classification-file
* reference-config-file
* threshold-file
* address-vars

® port-vars

12.5.4 Unix Socket

Registration

register-tenant <id> <yaml>

Examples:

register-tenant
register-tenant
register-tenant
register-tenant
register-tenant

tenant-1.yaml
tenant-2.yaml
tenant-3.yaml
tenant-5.yaml
tenant-7.yaml

N oUW N =

unregister-tenant <id>

unregister-tenant 2
unregister-tenant 1

12.5. Multi Tenancy 285

Suricata User Guide, Release 7.0.0

Unix socket runmode (pcap processing)

The Unix Socket pcap-file command is used to associate the tenant with the pcap:

pcap-file trafficl.pcap /logsl/ 1
pcap-file traffic2.pcap /logs2/ 2
pcap-file traffic3.pcap /logs3/ 3
pcap-file traffic4.pcap /logs5/ 5
pcap-file traffic5.pcap /logs7/ 7

This runs the trafficl.pcap against tenant 1 and it logs into /logs1/, traffic2.pcap against tenant 2 and logs to /logs2/ and
SO on.

Live traffic mode

Multi-tenancy supports both VLAN and devices with live traffic.

In the master configuration yaml file, specify device or vlan for the selector setting.
Registration

Tenants can be mapped to vlan ids.

register-tenant-handler <tenant id> vlan <vlan id>

register-tenant-handler 1 vlan 1000

unregister-tenant-handler <tenant id> vlan <vlan id>

unregister-tenant-handler 4 vlan 1111
unregister-tenant-handler 1 vlan 1000

The registration of tenant and tenant handlers can be done on a running engine.

12.5.5 Eve JSON output

When multi-tenant support is configured and the detect engine is active then all EVE-types that report based on flows
will also report the corresponding tenant_id for events matching a tenant configuration.

12.6 Dropping Privileges After Startup

Currently, 1ibcap-ng is needed for dropping privileges on Suricata after startup. For libcap, see status of feature
request number #276 -- Libcap support for dropping privileges.

Most distributions have 1ibcap-ng in their repositories.

To download the current version of libcap-ng from upstream, see also http://people.redhat.com/sgrubb/libcap-ng/
ChangelLog

286 Chapter 12. Configuration

http://people.redhat.com/sgrubb/libcap-ng/ChangeLog
http://people.redhat.com/sgrubb/libcap-ng/ChangeLog

Suricata User Guide, Release 7.0.0

wget http://people.redhat.com/sgrubb/libcap-ng/libcap-ng-0.7.8.tar.gz
tar -xzvf libcap-ng-0.7.8.tar.gz

cd libcap-ng-0.7.8

./configure

make

make install

Download, configure, compile and install Suricata for your particular setup. See /nstallation. Depending on your
environment, you may need to add the --with-libpcap_ng-libraries and --with-libpcap_ng-includes options during the
configure step. e.g:

./configure --with-libcap_ng-libraries=/usr/local/lib \
--with-libcap_ng-includes=/usr/local/include

Now, when you run Suricata, tell it what user and/or group you want it to run as after startup with the --user and --group
options. e.g. (this assumes a 'suri' user and group):

suricata -D -i eth® --user=suri --group=suri

You will also want to make sure your user/group permissions are set so Suricata can still write to its log files which are
usually located in /var/log/suricata.

mkdir -p /var/log/suricata
chown -R root:suri /var/log/suricata
chmod -R 775 /var/log/suricata

12.7 Using Landlock LSM

Landlock is a Linux Security Module that has been introduced in Linux 5.13. It allows an application to sandbox itself
by selecting access right to directories using a deny by default approach.

Given its nature, Suricata knows where it is going to read files and where it is going to write them. So it is possible to
implement an efficient Landlock sandboxing policy.

Landlock is not active by default and needs to be activated in the YAML configuration. Configuration should come
with sane default (defined at build time) and the command line options are used to dynamically add some permissions.

Please note that Landlock is in blocking mode by default so careful testing is needed in production.

To enable Landlock, edit the YAML and set enabled to yes:

landlock:
enabled: yes
directories:
write:
- /var/log/suricata/
- /var/run/
read:
- /usr/
- /etc/

- /etc/suricata/

Following your running configuration you may have to add some directories. There are two lists you can use, write
to add directories where write is needed and read for directories where read access is needed.

12.7. Using Landlock LSM 287

Suricata User Guide, Release 7.0.0

Landlock is not active in some distributions and you may need to activate it at boot by adding 1sm=1andock to the Linux
command line. For example, on a Debian distribution with at least a linux 5.13, you can edit /etc/default/grub
and update the GRUB_CMDLINE_LINUX_DEFAULT option:

GRUB_CMDLINE_LINUX_DEFAULT="quiet lsm=landlock"

Then run sudo update-grub and reboot.

You can check at boot if it is running by doing:

sudo dmesg | grep landlock || journalctl -kg landlock

If you are interested in reading more about Landlock, you can use https://docs.kernel.org/userspace-api/landlock.html
as entry point.

12.8 systemd notification

12.8.1 Introduction

Suricata supports systemd notification with the aim of notifying the service manager of successful initialisation. The
purpose is to enable the ability to start upon/await successful start-up for services/test frameworks that depend on a
fully initialised Suricata .

During the initialisation phase Suricata synchronises the initialisation thread with all active threads to ensure they are in
arunning state. Once synchronisation has been completed a READY=1 status notification is sent to the service manager
using sd_notify().

12.8.2 Example

A test framework requires Suricata to be capturing before the tests can be carried out. Writing a test.service and
ensuring the correct execution order with After=suricata.service forces the unit to be started after suricata.
service. This does not enforce Suricata has fully initialised. By configuring suricata.service as Type=notify
instructs the service manager to wait for the notification before starting test.service.

12.8.3 Requirements

This feature is only supported for distributions under the following conditions:
1. Distribution contains 1ibsystemd
2. Any distribution that runs under systemd
3. Unit file configuration: Type=notify
4. Contains development files for systemd shared library

To install development files: Fedora:

dnf -y install systemd-devel

Ubuntu/Debian:

apt -y install systemd-dev

288 Chapter 12. Configuration

https://docs.kernel.org/userspace-api/landlock.html

Suricata User Guide, Release 7.0.0

This package shall be compile-time configured and therefore only built with distributions fulfilling requirements [1, 2].
For notification to the service manager the unit file must be configured as shown in requirement [3]. Upon all require-
ments being met the service manager will start and await READY=1 status from Suricata. Otherwise the service manager
will treat the service unit as Type=simple and consider it started immediately after the main process ExecStart= has
been forked.

12.8.4 Additional Information

To confirm the system is running under systemd:

ps --no-headers -o comm 1

See: https://man7.org/linux/man-pages/man3/sd_notify.3.html for a detailed description on sd_notify.

See https://www.freedesktop.org/software/systemd/man/systemd.service.html for help writing systemd unit files.

12.9 Includes

A Suricata configuration file (typically /etc/suricata/suricata.yaml) may include other files allowing a config-
uration file to be broken into multiple files. The special field name include is used to include one or more files.

The contents of the include file are inlined at the level of the include statement. Include fields may also be included
at any level within a mapping.

12.9.1 Including a Single File

include: filename.yaml

12.9.2 Including Multiple Files

include:
- filenamel.yaml
- filename2.yaml

12.9.3 Include Inside a Mapping

vars:
address-groups:
include: address-groups.yaml

where address-groups.yaml contains:

%YAML 1.1

HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]"

is the equivalent of:

12.9. Includes 289

https://man7.org/linux/man-pages/man3/sd_notify.3.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html

Suricata User Guide, Release 7.0.0

vars:
address-groups:
HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]"

Note: Suricata versions less than 7 required multiple include statements to be specified to include more than one file.
While Suricata 7.0 still supports this it will issue a deprecation warning. Suricata 8.0 will not allow multiple include
statements at the same level as this is not allowed by YAML.

290 Chapter 12. Configuration

CHAPTER
THIRTEEN

REPUTATION

13.1 IP Reputation

13.1.1 IP Reputation Config

IP reputation has a few configuration directives, all disabled by default.

IP Reputation

#reputation-categories-file: /etc/suricata/iprep/categories.txt
#default-reputation-path: /etc/suricata/iprep
#reputation-files:

- reputation.list

reputation-categories-file

The categories file mapping numbered category values to short names.

reputation-categories-file: /etc/suricata/iprep/categories.txt

default-reputation-path

Path where reputation files from the "reputation-files" directive are loaded from by default.

default-reputation-path: /etc/suricata/iprep

reputation-files

YAML list of file names to load. In case of a absolute path the file is loaded directly, otherwise the path from "default-
reputation-path" is pre-pended to form the final path.

reputation-files:
- badhosts.list
- knowngood.list
- sharedhosting.list

291

Suricata User Guide, Release 7.0.0

Hosts

IP reputation information is stored in the host table, so the settings of the host table affect it.

Depending on the number of hosts reputation information is available for, the memcap and hash size may have to be
increased.

Reloads

Sending Suricata a USR2 signal will reload the IP reputation data, along with the normal rules reload.

During the reload the host table will be updated to contain the new data. The iprep information is versioned. When the
reload is complete, Suricata will automatically clean up the old iprep information.

Only the reputation files will be reloaded, the categories file won't be. If categories change, Suricata should be restarted.
File format

The format of the reputation files is described in the /P Reputation Format page.

13.1.2 IP Reputation Format

Description of IP Reputation file formats. For the configuration see /P Reputation Config and IP Reputation Keyword
for the rule format.

Categories file

The categories file provides a mapping between a category number, short name, and long description. It's a simple
CSV file:

<id>,<short name>,<description>

Example:

1,BadHosts,Known bad hosts
2,Google,Known google host

The maximum value for the category id is hard coded at 60 currently.

Reputation file

The reputation file lists a reputation score for hosts in the categories. It's a simple CSV file:

<ip>,<category>,<reputation score>

The IP is an IPv4 address in the quad-dotted notation or an IPv6 address. Both IP types support networks in CIDR
notation. The category is the number as defined in the categories file. The reputation score is the confidence that this
IP is in the specified category, represented by a number between 1 and 127 (0 means no data).

Example:

1.2.3.4,1,101
1.1.1.0/24,6,88

292 Chapter 13. Reputation

Suricata User Guide, Release 7.0.0

If an IP address has a score in multiple categories it should be listed in the file multiple times.

Example:

1,1,10
1

1.1.1.1,1
1.1.1.1,2,10

This lists 1.1.1.1 in categories 1 and 2, each with a score of 10.

The purpose of the IP reputation component is the ranking of IP Addresses within the Suricata Engine. It will collect,
store, update and distribute reputation intelligence on IP Addresses. The hub and spoke architecture will allows the
central database (The Hub) to collect, store and compile updated IP reputation details that are then distributed to user-
side sensor databases (Spokes) for inclusion in user security systems. The reputation data update frequency and security
action taken, is defined in the user security configuration.

The intent of IP Reputation is to allow sharing of intelligence regarding a vast number of IP addresses. This can be
positive or negative intelligence classified into a number of categories. The technical implementation requires three
major efforts; engine integration, the hub that redistributes reputation, and the communication protocol between hubs
and sensors. The hub will have a number of responsibilities. This will be a separate module running on a separate
system as any sensor. Most often it would run on a central database that all sensors already have communication with.
It will be able to subscribe to one or more external feeds. The local admin should be able to define the feeds to be
subscribed to, provide authentication credentials if required, and give a weight to that feed. The weight can be an
overall number or a by category weight. This will allow the admin to minimize the influence a feed has on their overall
reputation if they distrust a particular category or feed, or trust another implicitly. Feeds can be configured to accept
feedback or not and will report so on connect. The admin can override and choose not to give any feedback, but the
sensor should report these to the Hub upstream on connect. The hub will take all of these feeds and aggregate them
into an average single score for each IP or IP Block, and then redistribute this data to all local sensors as configured. It
should receive connections from sensors. The sensor will have to provide authentication and will provide feedback. The
hub should redistribute that feedback from sensors to all other sensors as well as up to any feeds that accept feedback.
The hub should also have an API to allow outside statistical analysis to be done to the database and fed back into the
stream. For instance a local site may choose to change the reputation on all Russian IP blocks, etc.

For more information about IP Reputation see /P Reputation Config, IP Reputation Keyword and IP Reputation Format.

13.1. IP Reputation 293

Suricata User Guide, Release 7.0.0

294 Chapter 13. Reputation

CHAPTER
FOURTEEN

INIT SCRIPTS

For Ubuntu with Upstart, the following can be used in /etc/init/suricata.conf:

suricata

description "Intrusion Detection System Daemon"

start on runlevel [2345]

stop on runlevel [!2345]

expect fork

exec suricata -D --pidfile /var/run/suricata.pid -c /etc/suricata/suricata.yaml -i ethl

295

Suricata User Guide, Release 7.0.0

296 Chapter 14. Init Scripts

CHAPTER
FIFTEEN

SETTING UP IPS/INLINE FOR LINUX

15.1 Setting up IPS with Netfilter

In this guide, we'll discuss how to work with Suricata in layer3 inline mode using iptables.

First, start by compiling Suricata with NFQ support. For instructions see Ubuntu Installation. For more information
about NFQ and iptables, see NFQ.

To check if you have NFQ enabled in your Suricata build, enter the following command:

suricata --build-info

and make sure that NFQ is listed in the output.

To run Suricata with the NFQ mode, you have to make use of the -q option. This option tells Suricata which queue
numbers it should use.

sudo suricata -c /etc/suricata/suricata.yaml -q 0O

15.1.1 Iptables configuration

First of all, it is important to know which traffic you would like to send to Suricata. There are two choices:
1. Traffic that passes your computer

2. Traffic that is generated by your computer.
Scenans 1

Metwork ~
Galeway

) o o

L
L— Farvward

297

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Ubuntu_Installation

Suricata User Guide, Release 7.0.0

Scenana 2
. e i
o
_ ./'J
Suricata T Internet
- {
INPUT
QUTPUT

If Suricata is running on a gateway and is meant to protect the computers behind that gateway you are dealing with the
first scenario: forward_ing .

If Suricata has to protect the computer it is running on, you are dealing with the second scenario: host (see drawing 2).
These two ways of using Suricata can also be combined.

The easiest rule in case of the gateway-scenario to send traffic to Suricata is:

sudo iptables -I FORWARD -j NFQUEUE

In this case, all forwarded traffic goes to Suricata.

In case of the host situation, these are the two most simple iptables rules;

sudo iptables -I INPUT -j NFQUEUE
sudo iptables -I OUTPUT -j NFQUEUE

It is possible to set a queue number. If you do not, the queue number will be 0 by default.

Imagine you want Suricata to check for example just TCP traffic, or all incoming traffic on port 80, or all traffic on
destination-port 80, you can do so like this:

sudo iptables -I INPUT -p tcp -j NFQUEUE
sudo iptables -I OUTPUT -p tcp -j NFQUEUE

In this case, Suricata checks just TCP traffic.

sudo iptables -I INPUT -p tcp --sport 80 -j NFQUEUE
sudo iptables -I OUTPUT -p tcp --dport 80 -j NFQUEUE

In this example, Suricata checks all packets for outgoing connections to port 80.

- e
Y by
source port 80 ,f-“l
T

b

Intermet
e

destination port B0

298 Chapter 15. Setting up IPS/inline for Linux

Suricata User Guide, Release 7.0.0

Suricata

To see if you have set your iptables rules correct make sure Suricata is running and enter:

sudo iptables -vnL

In the example you can see if packets are being logged.

5, 43968
tep spt:80 NFQUELE num B

tes)

SouUrce destination

tep dpt:88 HFMIEUE num 8

This description of the use of iptables is the way to use it with IPv4. To use it with IPv6 all previous mentioned
commands have to start with ip6tables. It is also possible to let Suricata check both kinds of traffic.

There is also a way to use iptables with multiple networks (and interface cards). Example:

ethl

Suricata
pppl

sudo iptables -I FORWARD -i eth® -o ethl -j NFQUEUE
sudo iptables -I FORWARD -i ethl -o eth® -j NFQUEUE

The options -i (input) -o (output) can be combined with all previous mentioned options.

If you would stop Suricata and use internet, the traffic will not come through. To make internet work correctly, first
delete all iptables rules.

To erase all iptables rules, enter:

15.1. Setting up IPS with Netfilter 299

Suricata User Guide, Release 7.0.0

sudo iptables -F

15.1.2 NFtables configuration

The NFtables configuration is straight forward and allows mixing firewall rules with IPS. The concept is to create a
dedicated chain for the IPS that will be evaluated after the firewalling rule. If your main table is named filter it can be
created like so:

nft> add chain filter IPS { type filter hook forward priority 10;}

To send all forwarded packets to Suricata one can use

nft> add rule filter IPS queue

To only do it for packets exchanged between ethO and ethl

nft> add rule filter IPS iif eth® oif ethl queue
nft> add rule filter IPS iif ethl oif eth® queue

15.1.3 NFQUEUE advanced options

The NFQUEUE mechanism supports some interesting options. The nftables configuration will be shown there but
the features are also available in iptables.

The full syntax of the queuing mechanism is as follows:

nft add rule filter IPS queue num 3-5 options fanout,bypass

This rule sends matching packets to 3 load-balanced queues starting at 3 and ending at 5. To get the packets in Suricata
with this setup, you need to specify multiple queues on command line:

suricata -q 3 -q 4 -q 5

fanout and bypass are the two available options:

* fanout: When used together with load balancing, this will use the CPU ID instead of connection hash as an index
to map packets to the queues. The idea is that you can improve performance if there’s one queue per CPU. This
requires total with a number of queues superior to 1 to be specified.

* bypass: By default, if no userspace program is listening on an Netfilter queue, then all packets that are to be
queued are dropped. When this option is used, the queue rule behaves like ACCEPT if there is no program
listening, and the packet will move on to the next table.

The bypass option can be used to avoid downtime of link when Suricata is not running but this also means that the
blocking feature will not be present.

300 Chapter 15. Setting up IPS/inline for Linux

Suricata User Guide, Release 7.0.0

15.2 Setting up IPS at Layer 2

15.2.1 AF_PACKET IPS mode

AF_PACKET capture method is supporting a IPS/Tap mode. In this mode, you just need the interfaces to be up.
Suricata will take care of copying the packets from one interface to the other. No iptables or nftables configuration
is necessary.

You need to dedicate two network interfaces for this mode. The configuration is made via configuration variable
available in the description of an AF_PACKET interface.

For example, the following configuration will create a Suricata acting as IPS between interface eth® and eth1:

af-packet:

- interface: eth®
threads: 1
defrag: no
cluster-type: cluster_flow
cluster-id: 98
copy-mode: ips
copy-iface: ethl
buffer-size: 64535
use-mmap: yes

- interface: ethl
threads: 1
cluster-id: 97
defrag: no
cluster-type: cluster_flow
copy-mode: ips
copy-iface: eth®
buffer-size: 64535
use-mmap: yes

This is a basic af-packet configuration using two interfaces. Interface eth® will copy all received packets to ethl
because of the copy-* configuration variable

copy-mode: ips
copy-iface: ethl

The configuration on ethl is symmetric

copy-mode: ips
copy-iface: eth®

There are some important points to consider when setting up this mode:

* The implementation of this mode is dependent of the zero copy mode of AF_PACKET. Thus you need to set
use-mmap to yes on both interface.

e MTU on both interfaces have to be equal: the copy from one interface to the other is direct and packets bigger
then the MTU will be dropped by kernel.

¢ Set different values of cluster-id on both interfaces to avoid conflict.

* Any network card offloading creating bigger then physical layer datagram (like GRO, LRO, TSO) will result in
dropped packets as the transmit path can not handle them.

15.2. Setting up IPS at Layer 2 301

Suricata User Guide, Release 7.0.0

* Set stream.inline to auto or yes so Suricata switches to blocking mode.
The copy-mode variable can take the following values:

* ips: the drop keyword is honored and matching packets are dropped.

* tap: no drop occurs, Suricata acts as a bridge

Some specific care must be taken to scale the capture method on multiple threads. As we can't use defrag that will
generate too big frames, the in kernel load balancing will not be correct: the IP-only fragment will not reach the same
thread as the full featured packet of the same flow because the port information will not be present.

A solution is to use eBPF load balancing to get an IP pair load balancing without fragmentation. The AF_PACKET
IPS Configuration using multiple threads and eBPF load balancing looks like the following:

af-packet:

- interface: eth®
threads: 16
defrag: no
cluster-type: cluster_ebpf
ebpf-1b-file: /usr/libexec/suricata/ebpf/lb.bpf
cluster-id: 98
copy-mode: ips
copy-iface: ethl
buffer-size: 64535
use-mmap: yes

- interface: ethl
threads: 16
cluster-id: 97
defrag: no
cluster-type: cluster_ebpf
ebpf-1b-file: /usr/libexec/suricata/ebpf/lb.bpf
copy-mode: ips
copy-iface: eth®
buffer-size: 64535
use-mmap: yes

The eBPF file /usr/libexec/suricata/ebpf/1b.bpf may not be present on disk. See eBPF and XDP for more
information.

15.2.2 DPDK IPS mode

In the same way as you would configure AF_PACKET IPS mode, you can configure the DPDK capture module. Prior
to starting with IPS (inline) setup, it is recommended to go over Data Plane Development Kit (DPDK) manual page to
understand the setup essentials.

DPDK IPS mode, similarly to AF-Packet, uses two interfaces. Packets received on the first network interface
(0000:3b:00. 1) are transmitted by the second network interface (0000:3b: 00.0) and similarly, packets received on
the second interface (0000:3b:00.0) are transmitted by the first interface (0000:3b:00.1). Packets are not altered
in any way in this mode.

The following configuration snippet configures Suricata DPDK IPS mode between two NICs:

dpdk:
eal-params:
proc-type: primary

(continues on next page)

302 Chapter 15. Setting up IPS/inline for Linux

Suricata User Guide, Release 7.0.0

(continued from previous page)

interfaces:

- interface: 0000:3b:00.1
threads: 4
promisc: true
multicast: true
checksum-checks: true
checksum-checks-offload: true
mempool-size: 262143
mempool-cache-size: 511
rx-descriptors: 4096
tx-descriptors: 4096
copy-mode: ips
copy-iface: 0000:3b:00.0
mtu: 3000

- interface: 0000:3b:00.0
threads: 4
promisc: true
multicast: true
checksum-checks: true
checksum-checks-offload: true
mempool-size: 262143
mempool-cache-size: 511
rx-descriptors: 4096
tx-descriptors: 4096
copy-mode: ips
copy-iface: 0000:3b:00.1
mtu: 3000

The previous DPDK configuration snippet outlines several things to consider:
e copy-mode - see Section AF_PACKET IPS mode for more details.
e copy-iface - see Section AF_PACKET IPS mode for more details.

* threads - all interface entries must have their thread count configured and paired/connected interfaces must be
configured with the same amount of threads.

e mtu - MTU must be the same on both paired interfaces.

DPDK capture module also requires having CPU affinity set in the configuration file. For the best performance, ev-
ery Suricata worker should be pinned to a separate CPU core that is not shared with any other Suricata thread (e.g.
management threads). The following snippet shows a possible Threading configuration set-up for DPDK IPS mode.

threading:
set-cpu-affinity: yes
cpu-affinity:
- management-cpu-set:
cpu: [0]
- worker-cpu-set:
cpu: [2,4,6,8,10,12,14,16]

15.2. Setting up IPS at Layer 2 303

Suricata User Guide, Release 7.0.0

15.2.3 Netmap IPS mode

Using Netmap to support IPS requires setting up pairs of interfaces; packets are received on one interface within the
pair, inspected by Suricata, and transmitted on the other paired interface. You can use native or host stack mode; host
stack mode is used when the interface name contains the # character, e.g, enp6s®£04. host stack mode does not require
multiple physical network interfaces.

Netmap Host Stack Mode

Netmap's host stack mode allows packets that flow through Suricata to be used with other host OS applications, e.g., a
firewall or similar. Additionally, host stack mode allows traffic to be received and transmitted on one network interface
card.

With host stack mode, Netmap establishes a pair of host stack mode rings (one each for RX and TX). Packets pass
through the host operating system network protocol stack. Ingress network packets flow from the network interface
card to the network protocol stack and then into the host stack mode rings. Outbound packets flow from the host stack
mode rings to the network protocol stack and finally, to the network interface card. Suricata receives packets from
the host stack mode rings and, in IPS mode, places packets to be transmitted into the host stack mode rings. Packets
transmitted by Suricata into the host stack mode rings are available for other host OS applications.

Paired network interfaces are specified in the netmap configuration section. For example, the following configuration
will create a Suricata acting as IPS between interface enp6s0£0 and enp6s0£1

netmap:

- interface: enp6s0£f0
threads: auto
copy-mode: ips
copy-iface: enp6s0f1l

- interface: enp6s0fl
threads: auto
copy-mode: ips
copy-iface: enp6s0£f0

You can specify the threads value; the default value of auto will create a thread for each queue supported by the
NIC,; restrict the thread count by specifying a value, e.g., threads: 1

This is a basic netmap configuration using two interfaces. Suricata will copy packets between interfaces enp6s0£0
and en60sf1 because of the copy-* configuration variable in interface's enp6s0f® configuration

copy-mode: ips
copy-iface: enp6s0fl

The configuration on enp6s0£f1 is symmetric

copy-mode: ips
copy-iface: enp6s0f®

The host stack mode feature of Netmap can be used. host stack mode doesn't require a second network interface.

This example demonstrates host stack mode with a single physical network interface enp6s0£01

- interface: enp60s0f0
copy-mode: ips
copy-iface: enp6s0f0*

304 Chapter 15. Setting up IPS/inline for Linux

Suricata User Guide, Release 7.0.0

The configuration on enp6s0f04 is symmetric

- interface: enp60s0f0*
copy-mode: ips
copy-iface: enp6s0£f®

Suricata will use zero-copy mode when the runmode is workers.
There are some important points to consider when setting up this mode:

* Any network card offloading creating bigger then physical layer datagram (like GRO, LRO, TSO) will result in
dropped packets as the transmit path can not handle them.

* Set stream.inline to auto or yes so Suricata switches to blocking mode. The default value is auto.
The copy-mode variable can take the following values:
* ips: the drop keyword is honored and matching packets are dropped.

* tap: no drop occurs, Suricata acts as a bridge

15.2. Setting up IPS at Layer 2 305

Suricata User Guide, Release 7.0.0

306 Chapter 15. Setting up IPS/inline for Linux

CHAPTER
SIXTEEN

SETTING UP IPS/INLINE FOR WINDOWS

This guide explains how to work with Suricata in layer 4 inline mode using WinDivert on Windows.

First start by compiling Suricata with WinDivert support. For instructions, see Windows Installation. This documenta-
tion has not yet been updated with WinDivert information, so make sure to add the following flags before configuring
Suricata with configure:

--enable-windivert=yes --with-windivert-include=<include-dir> --with-windivert-libraries=
—<libraries-dir>

WinDivert.dll and WinDivert.sys must be in the same directory as the Suricata executable. WinDivert automatically
installs the driver when it is run. For more information about WinDivert, see https://www.reqrypt.org/windivert-doc.
html.

To check if you have WinDivert enabled in your Suricata, enter the following command in an elevated command prompt
or terminal:

suricata -c suricata.yaml --windivert [filter string]

For information on the WinDivert filter language, see https://www.reqrypt.org/windivert-doc.html#filter_language

If Suricata is running on a gateway and is meant to protect the network behind that gateway, you need to run WinDivert
at the NETWORK_FORWARD layer. This can be achieved using the following command:

suricata -c suricata.yaml --windivert-forward [filter string]

The filter is automatically stopped and normal traffic resumes when Suricata is stopped.

A quick start is to examine all traffic, in which case you can use the following command:

suricata -c suricata.yaml --windivert[-forward] true

A few additional examples:

Only TCP traffic:

suricata -c suricata.yaml --windivert tcp

Only TCP traffic on port 80:

suricata -c suricata.yaml --windivert "tcp.DstPort == 80"

TCP and ICMP traffic:

suricata -c suricata.yaml --windivert "tcp or icmp"

307

https://redmine.openinfosecfoundation.org/attachments/download/1175/SuricataWinInstallationGuide_v1.4.3.pdf
https://www.reqrypt.org/windivert-doc.html
https://www.reqrypt.org/windivert-doc.html
https://www.reqrypt.org/windivert-doc.html#filter_language

Suricata User Guide, Release 7.0.0

308 Chapter 16. Setting up IPS/inline for Windows

CHAPTER
SEVENTEEN

OUTPUT

17.1 EVE

17.1.1 Eve JSON Output

The EVE output facility outputs alerts, anomalies, metadata, file info and protocol specific records through JSON.

The most common way to use this is through 'EVE', which is a firehose approach where all these logs go into a single
file.

outputs:
Extensible Event Format (nicknamed EVE) event log in JSON format
- eve-log:
enabled: yes
filetype: regular #regular|syslog|unix_dgram|unix_stream|redis
filename: eve.json
Enable for multi-threaded eve.json output; output files are amended
with an identifier, e.g., eve.9.json
#threaded: false
#prefix: "@cee: " # prefix to prepend to each log entry
the following are valid when type: syslog above
#identity: "suricata"
#facility: locals
#level: Info ## possible levels: Emergency, Alert, Critical,
Error, Warning, Notice, Info, Debug
#redis:
server: 127.0.0.1
port: 6379
async: true ## if redis replies are read asynchronously
mode: list ## possible values: list[lpush (default), rpush, channel|publish

lpush and rpush are using a Redis list. "list" is an alias for.
— lpush

publish is using a Redis channel. "channel" is an alias for.
—publish

key: suricata ## key or channel to use (default to suricata)

Redis pipelining set up. This will enable to only do a query every

'batch-size' events. This should lower the latency induced by network

connection at the cost of some memory. There is no flushing implemented
so this setting as to be reserved to high traffic suricata.

pipelining:

enabled: yes ## set enable to yes to enable query pipelining

(continues on next page)

309

Suricata User Guide, Release 7.0.0

(continued from previous page)

batch-size: 10 ## number of entry to keep in buffer

Include top level metadata. Default yes.
#metadata: no

types:
- alert:
payload: yes # enable dumping payload in Base64
payload-buffer-size: 4kb # max size of payload buffer to output in eve-log
payload-printable: yes # enable dumping payload in printable (lossy).
- format
packet: yes # enable dumping of packet (without stream.
< segments)
http-body: yes # Requires metadata; enable dumping of http body.
—1in Base64
http-body-printable: yes # Requires metadata; enable dumping of http body.
—1in printable format

Enable the logging of tagged packets for rules using the
"tag" keyword.
tagged-packets: yes

Configure the metadata to be logged along with an

alert. The following shows the default configuration

which is used if this field is not provided or simply

set to a truthful value. Setting of this section is only
required if you wish to enable/disable specific fields.
#metadata:

Include the decoded application layer (ie. http, dns)
app-layer: true

Log the current state of the flow record.
flow: true

rule:
Log the metadata field from the rule in a structured
format.
metadata: true

Log the raw rule text.
raw: false

HTTP X-Forwarded-For support by adding an extra field or overwriting
the source or destination IP address (depending on flow direction)
with the one reported in the X-Forwarded-For HTTP header. This is
helpful when reviewing alerts for traffic that is being reverse

or forward proxied.

xff:

enabled: no

Two operation modes are available, "extra-data" and "overwrite".
mode: extra-data

oW W W W

(continues on next page)

310 Chapter 17. Output

Suricata User Guide, Release 7.0.0

(continued from previous page)

Two proxy deployments are supported, '"reverse" and "forward". In
a "reverse" deployment the IP address used is the last one, in a
"forward" deployment the first IP address is used.

deployment: reverse

Header name where the actual IP address will be reported, if more
than one IP address is present, the last IP address will be the
one taken into consideration.

header: X-Forwarded-For

- http:

extended: yes # enable this for extended logging information

custom allows additional http fields to be included in eve-log

the example below adds three additional fields when uncommented
#custom: [Accept-Encoding, Accept-Language, Authorization]

- dns:

Use version 2 logging with the new format:

dns answers will be logged in one single event
rather than an event for each of the answers.
Without setting a version the version

will fallback to 1 for backwards compatibility.
version: 2

Enable/disable this logger. Default: enabled.
#enabled: no

Control logging of requests and responses:

- requests: enable logging of DNS queries

- responses: enable logging of DNS answers

By default both requests and responses are logged.
#requests: no

#responses: no

Format of answer logging:

- detailed: array item per answer

- grouped: answers aggregated by type
Default: all

#answer-format: [detailed, grouped]

Answer types to log.
Default: all
#answer-types: [a, aaaa, cname, mx, ns, ptr, txt]

- dns:

Version 1 DNS logger.
Deprecated: Will be removed by May 2022.
version: 1

enabled: no

control logging of queries and answers

default yes, no to disable

query: yes # enable logging of DNS queries
answer: yes # enable logging of DNS answers
control which RR types are logged

all enabled if custom not specified

(continues on next page)

17.1. EVE

311

Suricata User Guide, Release 7.0.0

(continued from previous page)

#custom: [a, aaaa, chame, mx, ns, ptr, txt]

- tls:

extended: yes # enable this for extended logging information

output TLS transaction where the session is resumed using a

session id

#session-resumption: no

custom allows to control which tls fields that are included

in eve-log

#custom: [subject, issuer, session_resumed, serial, fingerprint, sni,.

—version, not_before, not_after, certificate, chain]

#-
#
#
#

files:
force-magic: no # force logging magic on all logged files
force logging of checksums, available hash functions are md5,
shal and sha256
#force-hash: [md5]

drop:
alerts: yes # log alerts that caused drops
flows: all # start or all: 'start' logs only a single drop
per flow direction. All logs each dropped pkt.
smtp:

#extended: yes # enable this for extended logging information

this includes: bcc, message-id, subject, x_mailer, user-agent

custom fields logging from the list:

reply-to, bcc, message-id, subject, x-mailer, user-agent, received,
x-originating-ip, in-reply-to, references, importance, priority,

sensitivity, organization, content-md5, date

#custom: [received, x-mailer, x-originating-ip, relays, reply-to, bcc]
output md5 of fields: body, subject

for the body you need to set app-layer.protocols.smtp.mime.body-md5
to yes

#md5: [body, subject]

NFS logging.
nfs
IKE logging.
ike
BitTorrent DHT logging.
bittorrent-dht
ssh
stats:
totals: yes # stats for all threads merged together
threads: no # per thread stats
deltas: no # include delta values
dhcp:
DHCP logging.
enabled: yes
When extended mode is on, all DHCP messages are logged
with full detail. When extended mode is off (the
default), just enough information to map a MAC address
to an IP address is logged.
extended: no
bi-directional flows

(continues on next page)

312

Chapter 17. Output

Suricata User Guide, Release 7.0.0

(continued from previous page)

- flow
uni-directional flows
#- netflow

An event for logging metadata, specifically pktvars when
they are set, but will also include the full metadata object.
#- metadata

Each alert, http log, etc will go into this one file: 'eve.json'. This file can then be processed by 3rd party tools like
Logstash (ELK) or jq.

If ethernet is set to yes, then ethernet headers will be added to events if available.

Output types

EVE can output to multiple methods. regular is a normal file. Other options are syslog, unix_dgram, unix_stream
and redis.

Output types:

filetype: regular #regular|syslog|unix_dgram|unix_stream|redis

filename: eve.json

Enable for multi-threaded eve.json output; output files are amended

with an identifier, e.g., eve.9.json. Default: off

#threaded: off

#prefix: "@cee: " # prefix to prepend to each log entry

the following are valid when type: syslog above

#identity: "suricata"

#facility: local5

#level: Info ## possible levels: Emergency, Alert, Critical,
Error, Warning, Notice, Info, Debug

#ethernet: no # log ethernet header in events when available

#redis:

server: 127.0.0.1

port: 6379

async: true ## if redis replies are read asynchronously

mode: list ## possible values: list|[lpush (default), rpush, channel|publish

lpush and rpush are using a Redis list. "list" is an alias for lpush
publish is using a Redis channel. "channel" is an alias for publish
key: suricata ## key or channel to use (default to suricata)

Redis pipelining set up. This will enable to only do a query every

'batch-size' events. This should lower the latency induced by network

connection at the cost of some memory. There is no flushing implemented

so this setting as to be reserved to high traffic suricata.

pipelining:

enabled: yes ## set enable to yes to enable query pipelining

batch-size: 10 ## number of entry to keep in buffer

17.1. EVE 313

Suricata User Guide, Release 7.0.0

Alerts

Alerts are event records for rule matches. They can be amended with metadata, such as the application layer record
(HTTP, DNS, etc) an alert was generated for, and elements of the rule.

Metadata:

- alert:
#payload: yes # enable dumping payload in Base64
#payload-buffer-size: 4kb # max size of payload buffer to output in eve-log
#payload-printable: yes # enable dumping payload in printable (lossy) format
#packet: yes # enable dumping of packet (without stream segments)
#http-body: yes # Requires metadata; enable dumping of http body in Base64
#http-body-printable: yes # Requires metadata; enable dumping of http body in.
wprintable format

metadata:

Include the decoded application layer (ie. http, dns)
#app-layer: true

Log the current state of the flow record.
#flow: true

#rule:
Log the metadata field from the rule in a structured
format.
#metadata: true

Log the raw rule text.
#raw: false

Anomaly

Anomalies are event records created when packets with unexpected or anomalous values are handled. These events
include conditions such as incorrect protocol values, incorrect protocol length values, and other conditions which render
the packet suspect. Other conditions may occur during the normal progression of a stream; these are termed stream
events are include control sequences with incorrect values or that occur out of expected sequence.

Anomalies are reported by and configured by type:
¢ Decode
e Stream
* Application layer

Metadata:

- anomaly:
Anomaly log records describe unexpected conditions such as truncated packets,
packets with invalid IP/UDP/TCP length values, and other events that render
the packet invalid for further processing or describe unexpected behavior on
an established stream. Networks which experience high occurrences of
anomalies may experience packet processing degradation.

(continues on next page)

314 Chapter 17. Output

Suricata User Guide, Release 7.0.0

(continued from previous page)

Anomalies are reported for the following:

1. Decode: Values and conditions that are detected while decoding individual
packets. This includes invalid or unexpected values for low-level protocol
lengths as well.

. Stream: This includes stream related events (TCP 3-way handshake issues,
unexpected sequence number, etc).

3. Application layer: These denote application layer specific conditions that

are unexpected, invalid or are unexpected given the application monitoring

state.

HFHOoR R WO W W OB R KRR
N

By default, anomaly logging is disabled. When anomaly logging is enabled,
application-layer anomaly reporting is enabled.
#
Choose one or both types of anomaly logging and whether to enable
logging of the packet header for packet anomalies.
types:
#decode: no
#stream: no
#applayer: yes
#packethdr: no

HTTP

HTTP transaction logging.
Config:

- http:
extended: yes # enable this for extended logging information
custom allows additional http fields to be included in eve-log
the example below adds three additional fields when uncommented
#custom: [Accept-Encoding, Accept-Language, Authorization]
set this value to one among {both, request, response} to dump all
http headers for every http request and/or response
dump-all-headers: [both, request, response]

List of custom fields:

Yaml| Option

HTTP Header

accept

accept

accept_charset

accept-charset

accept_encoding

accept-encoding

accept_language

accept-language

accept_datetime

accept-datetime

authorization authorization
cache_control cache-control
cookie cookie

from from

max_forwards

max-forwards

continues on next page

17.1. EVE

315

Suricata User Guide, Release 7.0.0

Table 1 - continued from previous page

Yaml Option HTTP Header
origin origin

pragma pragma
proxy_authorization | proxy-authorization
range range

te te

via via

x_requested_with

x-requested-with

dnt

dnt

x_forwarded_proto

x-forwarded-proto

X_authenticated_user

x-authenticated-user

x_flash_version

x-flash-version

accept_range

accept-range

age age
allow allow
connection connection

content_encoding

content-encoding

content_language

content-language

content_length

content-length

content_location

content-location

content_md5

content-md5

content_range

content-range

content_type

content-type

date date

ctag etags

expires expires
last_modified last-modified
link link

location location

proxy_authenticate

proxy-authenticate

referer

referer

refresh refresh
retry_after retry-after

server server

set_cookie set-cookie

trailer trailer
transfer_encoding transfer-encoding
upgrade upgrade

vary vary

warning warning

www_authenticate

www-authenticate

true_client_ip

true-client-ip

org_src_ip

org-src-ip

x_bluecoat_via

x-bluecoat-via

In the custom option values from both columns can be used. The HTTP Header column is case insensitive.

316

Chapter 17. Output

Suricata User Guide, Release 7.0.0

DNS

Note: As of Suricata 7.0 the vl EVE DNS format has been removed.

DNS records are logged as one entry for the request, and one entry for the response.

YAML:

- dns:
#version: 2

Enable/disable this logger. Default: enabled.
#enabled: yes

Control logging of requests and responses:

- requests: enable logging of DNS queries

- responses: enable logging of DNS answers

By default both requests and responses are logged.
#requests: no

#responses: no

Format of answer logging:

- detailed: array item per answer

- grouped: answers aggregated by type
Default: all

#formats: [detailed, grouped]

Types to log, based on the query type.
Default: all.
#types: [a, aaaa, cname, mx, ns, ptr, txt]

TLS

TLS records are logged one record per session.

YAML:

- tls:

extended: yes # enable this for extended logging information

custom allows to control which tls fields that are included

in eve-log

#custom: [subject, issuer, serial, fingerprint, sni, version, not_before, not_after,.
—certificate, chain, ja3, ja3s]

The default is to log certificate subject and issuer. If extended is enabled, then the log gets more verbose.

By using custom it is possible to select which TLS fields to log.

17.1. EVE 317

Suricata User Guide, Release 7.0.0

Drops

Drops are event types logged when the engine drops a packet.

Config:
- drop:
alerts: yes # log alerts that caused drops
flows: all # start or all: 'start' logs only a single drop

per flow direction. All logs each dropped pkt.
Enable logging the final action taken on a packet by the engine
(will show more information in case of a drop caused by 'reject')
verdict: yes

Date modifiers in filename

It is possible to use date modifiers in the eve-log filename.

outputs:
- eve-log:
filename: eve-%s.json

The example above adds epoch time to the filename. All the date modifiers from the C library should be supported.
See the man page for strftime for all supported modifiers.

Threaded file output
By default, all output is written to the named filename in the outputs section. The threaded option enables each output
thread to write to individual files. In this case, the £ilename will include a unique identifier.

With threaded enabled, the output will be split among many files -- and the aggregate of each file's contents must be
treated together.

outputs:
- eve-log:
filename: eve.json
threaded: on

This example will cause each Suricata thread to write to its own "eve.json" file. Filenames are constructed by adding
a unique identifier to the filename. For example, eve.7. json.

Rotate log file

Eve-log can be configured to rotate based on time.

outputs:
- eve-log:
filename: eve-%Y-%m-%d-%H:%M.json
rotate-interval: minute

The example above creates a new log file each minute, where the filename contains a timestamp. Other supported
rotate-interval values are hour and day.

318 Chapter 17. Output

Suricata User Guide, Release 7.0.0

In addition to this, it is also possible to specify the rotate-interval as a relative value. One example is to rotate the
log file each X seconds.

outputs:
- eve-log:
filename: eve-%Y-%m-%d-%H:%M:%S.json
rotate-interval: 30s

The example above rotates eve-log each 30 seconds. This could be replaced with 30m to rotate every 30 minutes, 30h
to rotate every 30 hours, 30d to rotate every 30 days, or 30w to rotate every 30 weeks.

Multiple Logger Instances

It is possible to have multiple 'EVE' instances, for example the following is valid:

outputs:
- eve-log:
enabled: yes
type: file
filename: eve-ips.json
types:
- alert
- drop

- eve-log:
enabled: yes
type: file
filename: eve-nsm.json
types:
- http
- dns
- tls

So here the alerts and drops go into 'eve-ips.json', while http, dns and tls go into 'eve-nsm.json'.

With the exception of drop, you can specify multiples of the same logger type, however, drop can only be used once.

Note: The use of independent json loggers such as alert-json-log, dns-json-log, etc. has been deprecated and will be
removed by June 2020. Please use multiple eve-log instances as documented above instead. Please see the deprecation
policy for more information.

File permissions

Log file permissions can be set individually for each logger. £ilemode can be used to control the permissions of a log
file, e.g.:

outputs:
- eve-log:
enabled: yes
filename: eve.json
filemode: 600

17.1. EVE 319

https://suricata.io/our-story/deprecation-policy/
https://suricata.io/our-story/deprecation-policy/

Suricata User Guide, Release 7.0.0

The example above sets the file permissions on eve. json to 600, which means that it is only