
Using the OpenFEC.org Performance Evaluation Tools

Vincent Roca (INRIA), Jonathan Detchart (INRIA), Mathieu Cunche (INRIA)
Valentin Savin (CEA-LETI), Jérôme Lacan (ISAE)

http://openfec.org

December 16, 2014

Contents

1 Introduction 2
1.1 Principles . 2
1.2 Requirements and limits . 2

2 Configuring the ”params.txt” file 2
2.1 The ”Database configuration” section . 3

3 Running tests 3

4 Analyzing the Results 4
4.1 The decoding throughput as a function of the channel loss percentage 5
4.2 Decoding failure probability as a function of the channel loss percentage 5
4.3 Decoding failure probability as a function of the number of received symbols 5
4.4 Inefficiency ratio as a function of the code rate . 5
4.5 Inefficiency ratio as a function of the object size . 6
4.6 Number of XOR operations as a function of the object size 6
4.7 Number of XOR operations as a function of the channel loss percentage 6

5 Plotting LDPC matrices 6

version: $Id: howto_performance_evaluation.tex 109 2014-04-08 09:10:12Z roca $

1

1 Introduction

The performance evaluation tools are a set a Perl scripts meant to assess the code and codec performances,
using many different metrics, in an automatic way.

1.1 Principles

These scripts use the eperftool program to simulate a transmission between a sender and a receiver over
a lossy channel. Therefore, we are doing an actual AL-FEC encoding (using a real encoder), and an actual
AL-FEC decoding (using a real decoder). Only the transmissions are simulated. You, as the user, control
many parameters, like the transmission type (in which order should the source and repair packets for the
various blocks be transmitted), the loss probability, and all the code specific parameters (e.g. the object
size, code-rate, symbol size).

A first script, run_tests.pl, runs several iterations of the eperftool program with the desired param-
eters. All test results are written into log files. These log files are then analyzed in real-time and the results
are inserted into a database that can be either a MySQL database or an SQLite file.

A second script, generate_graph.pl, is used to create the curves using various kinds of metrics (e.g.
you can have several kinds of curves without having to re-run tests). This script connects to the database
to execute select SQL requests and generates gnuplot files (.dem for the gnuplot commands and .dat

for the raw data). In no case does the script modify the database itself, so you even run it during tests, to
generate preliminary curves.

Both scripts need a parameter file (e.g. params.txt, but you can rename it as you want). This ASCII
file contains all the necessary parameters to run tests and to generate the curves (even if in the latest case,
only the database connection string is required).

1.2 Requirements and limits

• The set of tools provided require you use a Linux or Mac OSX operating systems. This does
not mean it won’t work on different operating systems, just that we did not test and cannot guaranty
anything.

• Performance analysis tools require you use either a MySQL or SQLite tools. Make sure one of them
is available on your system, otherwise install it. See section 2.1 for more information.

• LDPC matrices plot facilities have specific requirements. See section 5 for more information.

2 Configuring the ”params.txt” file

→ In short: edit the ”params.txt” file to define the simula-
tion parameters.

The parameters file (called by default params.txt) contains the following sections:

• Tools: paths to the various tools;

• Files: paths to the various files that may be needed during simulations;

• Tests: tests to perform;

• Code/codec configuration: codes to use and how to use them;

• Transmission and loss configuration: kind of channel to use;

• Database configuration: SQL related parameters;

See the provided file for explanations on the syntax. The present document only contains additional infor-
mation not present in the params.txt file.

2

2.1 The ”Database configuration” section

The ”Database configuration” part defines parameters for using database:

Name Description

erase database Allow or not the script to erase the database before running tests
database Kind of database, i.e. either MySQL database or SQLite file

The erase database parameter must be a boolean (true or false). If this parameter is set to true,
the database is erased before running tests. Setting this parameter to false allows to generate manually
intermediate curves between several executions of the run_tests.pl script, e.g. to refine test areas that are
worth the pain, instead of executing once, with a lot of iterations, the run_tests.pl script.

The database parameter contains the information needed to connect to the database. Two models are
supported:

• the MySQL server model:
Syntax: database server <database_name> <host> <port> <user> <password>

This model requires a MYSQL driver, with a Perl DBD::MySQL module.

– database_name is the name of an existing database. If the database doesn’t exist, the script
displays an error;

– host is the address of the database server;

– port is the port for TCP connexion (default: 3306);

– user and password are the login and the password of a user allowed to execute SQL request on
the database (e.g. insert);

Example: to connect to the perf_stats database, located on server 192.168.1.1/3306, for user ”toto”
and password ”otot”, use:
database server perf_stats 192.168.1.1 3306 toto otot

• the SQLite file model:
Syntax: database file <name>

This model requires an SQLite driver.

If not already installed on your system, you can either use a package management system (yum or
similar), or install everything manually. To that purpose go to the DBD SQLite cpan page, at URL:
http://search.cpan.org/ adamk/DBD-SQLite-1.29/
download the package, and follow the installation instructions given at URL:
http://www.cpan.org/modules/INSTALL.html.

The name parameter is the name of the database file. If this file doesn’t exist, the script will create it
automatically.

For an introduction to the use of MySQL, you can have a look at:
http://dev.mysql.com/doc/refman/5.0/en/tutorial.html

3 Running tests

→ In short: once the ”params.txt” file is ready, launch sim-
ulations and take a few cofees or some vacation, depending
on the tests carried out ;-).

3

http://search.cpan.org/~adamk/DBD-SQLite-1.29/
http://www.cpan.org/modules/INSTALL.html
http://dev.mysql.com/doc/refman/5.0/en/tutorial.html

Tests are run with the run_tests.pl script. It requires a single parameter, the params.txt file whose
syntax is described in section 2 (note that any file name can be used, params.txt is just the default name).

During execution, the script loops over all the parameter values. If some parameters have been set but
are not required, they are ignored. For instance, if the Reed-Solomon and LDPC-staircase codes are both
considered, the ldpc_N1 parameter is considered for LDPC tests but silently ignored for Reed-Solomon tests.

In order to speed-up the tests, several processes can be run in parallel, one per simulation thread. More
precisely, if the using_threads parameter is set to true in the params.txt file, the number of threads is set
equal to the number of CPU cores 1. Each simulation thread has in charge a subset of the desired number
of iterations (as specified by the iteration parameter in the params.txt file). Then, for each iteration,
the eperftool program is launched (as a process), which means that several eperftool processes can run
at the same time.

Each thread writes the eperftool results in a separate temporary file. Then, every nb_tests_for-
_partial_results iterations, the content of a temporary file is copied into the general log file and at the
same time, analyzed and the simulation results sent to the SQL database. The thread temporary file is then
reset.

This approach is particularly useful in case of very long tests (e.g. that last several hours/days), in order
to save partial results and get quickly an idea of the results (and possibly change parameters if a mistake is
found).

In order to further speed-up the tests, you can also use several simulation hosts, each of them being in
charge of a subset of the tests. Using a MySQL central database, the results are automatically aggregated
in the SQL database. Note that several params.txt files have to be used in this case, one per subset of the
tests, and it is your responsibility to do this split.

To summarize:

Input a single params.txt file (for tests on a single simulation machine), or several params.txt
files (for tests on several machines, using the MySQL mode)

During tests on a simulation machine, one temporary log file per thread, plus a general log file. The
general log file and the SQL database are updated periodically.

Output on a simulation machine, the general log file, plus the SQL database (at the server or at
the simulation machine with SQLite).

After running tests, you can analyze the results with another dedicated script and generate curves
automatically, as explained below.

4 Analyzing the Results

→ In short: once tests are completed, analyze the results
and generate different kinds of curves automatically.

Curve types: Different kinds of curves can be generated by the post-simulation analyzes tools:

1. decoding throughput as a function of the channel loss percentage;

2. decoding failure probability as a function of the channel loss percentage;

3. decoding failure probability as a function of the number of received symbols;

4. min/average/max inefficiency ratio as a function of the code rate;

5. min/average/max inefficiency ratio as a function of the object size;

1This number is determined by analyzing the /opt/cpuinfo on Linux systems, or by analyzing the output of the sysctl hw
command on Mac OSX systems

4

6. number of XOR operations as a function of the object size (only in Debug mode);

7. number of XOR operations as a function of the channel loss percentage (only in Debug mode);

Analysis tools: Result analysis is performed by means of generate_curves.pl Perl script. For instance:
./generate_curves.pl params.txt -curve=2

is used to generate curves that plot the decoding failure probability as a function of the number of received
symbols.

This script connects to the database to execute select SQL requests in order to extract the appropriate
measurements. It then generates gnuplot files, namely a .dem containing the gnuplot commands, and a
.dat file containing the raw data. In order to view the graphs, use:
gnuplot <filename>.dem

Note that the analysis process as a whole never modifies the SQL database (it only performs the appro-
priate SQL select requests).

Note that the .dem can be edited, in order to fix details, remove curves in case there are several curves,
some of them not being of interest to you, change titles, etc. See the gnuplot documentation for additional
information.

About the inefficiency ratio metric: The inefficiency ratio is defined as the number of symbols
(source or repair) needed for decoding to complete (in a given test iteration) divided by the number of source
symbols (A.K.A. code dimension). MDS codes (e.g. Reed-Solomon) have an inefficiency ratio equal to 1, iff
there is a single block, non-MDS codes (e.g. all LDPC variants) have an inefficiency ratio greater or equal
to 1 (the smaller this ratio, the better). This ratio is either provided as is (e.g. ”1.006”), or as the decoding
overhead, where overhead = inefficiency ratio − 1, expressed in percentage (e.g. 0.6% in the previous
example).

4.1 The decoding throughput as a function of the channel loss percentage

This curve shows the decoding throughput as a function of the channel loss percentage. This curve allows you
to analyze codec decoding speed and to refine the decoding algorithms or their implementation accordingly.

Warning: be very careful when you carry out this kind of experiment, since the results can potentially
largely vary. In particular, make sure you are using the Release executable, that the simulation machine is
idle, and that using_threads is set to false (to avoid problems).

4.2 Decoding failure probability as a function of the channel loss percentage

This curve represents the decoding failure probability as a function of the channel loss percentage (see 1(a)).
This curve requires to enable the using_ml parameter in params.txt for the run_tests.pl script to run
tests accordingly. Typically, the tests required to produce this kind of curve are extremely long (several
hours or days). Also, in order to have enough precision, if you want a curve with failure probabilities as low
as 10−b, you have to specify at least 102+b iterations in the params.txt file.

4.3 Decoding failure probability as a function of the number of received symbols

This curve represents the decoding failure probability as a function of the number of received symbols rather
than channel loss probability (the two curves show similar behaviors in a different way) (see 1(b)). Like the
previous curve, you have to enable the the using_ml parameter in params.txt for therun_tests.pl script
to run tests accordingly.

4.4 Inefficiency ratio as a function of the code rate

In this curve, the object size is fixed.

5

(a) As a function of the loss probability (%) (b) As a function of the number of received symbols

Figure 1: Example of decoding failure probability curve (LDPC-Staircase, k = 1.024 symbols, code rate
2/3, N1 = 5 or 7).

Note that if in theory the inefficiency ratio of MDS codes is equal to 1, this is no longer true if
there are several blocks and with certain transmission types. For instance, using Reed-Solomon over an
object that is composed of 5000 source symbols (which leads to the creation of 30 blocks of size 166 or
167 source symbols each), and using a random permutation of all symbols before transmitting, the resulting
inefficiency ratio is around 8%: eperftool -codec=1 -tot_src=5000 -tot_rep=2500 -tx_type=0 In that
case, LDPC-staircase codes largely outperform Reed-Solomon codes. . .

4.5 Inefficiency ratio as a function of the object size

In this curve, the code rate is fixed.

4.6 Number of XOR operations as a function of the object size

(Valid only in Debug mode)
This curve represents the number of operations (e.g. XOR on symbols) required to decode as a function

of the object size. You have to use the Debug mode for the openfec library, because in Release mode,
statistics on operations are not enabled. This curve gives a complementary view of the code and codec
decoding speed, by focusing on its internal complexity rather than speed.

4.7 Number of XOR operations as a function of the channel loss percentage

(Valid only in Debug mode)
This is the same kind of curve as the previous one, but the object size is fixed.

5 Plotting LDPC matrices

→ In short: OpenFEC includes the possibility to plot LDPC
parity check matrices.

An LDPC parity check matrix can be plot for analysis purposes. To do so:

• If you are interested by plotting LDPC-staircase parity check matrix, then edit file:
src/lib_stable/ldpc_staircase/of_codec_profile.h.
Define: #define IL_SUPPORT

Do the same for all LDPC codecs you are interested in (codecs are independent).

6

• Edit file src/lib_stable/CMakeLists.txt.
Un-comment line: #target_link_libraries(openfec pthread IL)

(and of course comment the similar line that omits IL) to make sure the (Dev)IL library be used during
link edition.

• Make sure DevIL library is installed on your machine. On a Linux machine, you can look for libIL.so
to check it (e.g. use command locate libIL and look at the output). If not, you can either use a
package management system (yum or similar), or install everything manually. To that purpose go to
URL:
http://openil.sourceforge.net
and install the library as indicated.

• Compile the library and tools in DEBUG mode, using:
cd build

cmake .. -DDEBUG:STRING=ON

make

• Launch eperftool, using one of the LDPC codes. A .bmp file is created in the local directory, containing
an image of the parity check matrix. Open it with an appropriate tool (e.g. okular or eog on a
Linux machine). You can also launch automatically the visualisation tool, from OpenFEC, using the
system("eog IL_file_image.bmp"); call (for instance).

Figure 2: Example of matrix (LDPC-staircase H matrix, with k=500, n=750) shown in reverse order (H2,
the double diagonal sub-matrix, appears before H1).

NB 1: For internal reasons, LDPC parity check matrices, H = H1|H2 are often stored in reverse order
and H2 (double diagonal sub-matrix in case of LDPC-Staircase) appears before H1.

NB 2: You can of course use image manipulation tools (e.g. gimp) if you prefer a negative view of the
matrix (by default ”1”s appear as white pixels, over a black background, the example of figure 2 is for
instance inverted).

7

http://openil.sourceforge.net

	Introduction
	Principles
	Requirements and limits

	Configuring the "params.txt" file
	The "Database configuration" section

	Running tests
	Analyzing the Results
	The decoding throughput as a function of the channel loss percentage
	Decoding failure probability as a function of the channel loss percentage
	Decoding failure probability as a function of the number of received symbols
	Inefficiency ratio as a function of the code rate
	Inefficiency ratio as a function of the object size
	Number of XOR operations as a function of the object size
	Number of XOR operations as a function of the channel loss percentage

	Plotting LDPC matrices

